[1]张林燕,徐丽丽,李莉,等.无人机多光谱遥感技术监测松材线虫病疫木研究[J].江苏林业科技,2022,49(03):22-27.[doi:10.3969/j.issn.1001-7380.2022.03.004]
 Zhang Linyan,Xu lili,Li Li,et al.Application of UAV multis-pectral remote sensing technology inmonitoring dead trees of pine wilt disease (PWD)[J].Journal of Jiangsu Forestry Science &Technology,2022,49(03):22-27.[doi:10.3969/j.issn.1001-7380.2022.03.004]
点击复制

无人机多光谱遥感技术监测松材线虫病疫木研究()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第49卷
期数:
2022年03期
页码:
22-27
栏目:
试验研究
出版日期:
2022-06-30

文章信息/Info

Title:
Application of UAV multis-pectral remote sensing technology inmonitoring dead trees of pine wilt disease (PWD)
文章编号:
1001-7380(2022)03-0022-06
作者:
张林燕1 徐丽丽2李莉1 刘云鹏2*
1.溧阳市林业站,江苏 溧阳 213300;
2. 江苏省林业科学研究院,江苏 南京 211153
Author(s):
Zhang Linyan1 Xu lili2 Li Li1 Liu Yunpeng2*
1. Liyang Forestry Station, Liyang 213300,China;
2. Jiangsu Academy of Forestry,Nanjing 211153, China
关键词:
松材线虫病 多旋翼无人机遥感监测准确率
Keywords:
Pine wilt disease (PWD) Multi-rotor UAVRemote Sensing Monitoring TechnologyAccuracy
分类号:
S763.712.48;TP212.14
DOI:
10.3969/j.issn.1001-7380.2022.03.004
文献标志码:
A
摘要:
为探索无人机多光谱遥感技术监测大面积松材线虫病疫木的可能性和精度,该研究利用多旋翼无人机加载6通道多光谱相机,获取了典型松材线虫病疫区遥感图像,进而通过波段配准、拼接、辐射定标处理获得试验区的正射全景影像,并以此对试验区病死树进行识别和定位分析。结果显示:本次航拍试验区共有松材线虫病死树83株。通过对识别出的病死树分布位置和对应坐标的实地验证表明,本次航拍监测的准确率为95.2%,平均坐标精度为2.6 m,漏检率为9.8%,能够满足大面积松材线虫病监测工作应用需求。
Abstract:
To explore the application possibility and precision of UAV multi-spectral remote sensing technology in monitoring large-scale pine wood suffered in pine wilt disease(PWD),we used a multi-rotor UAV with a 6-channel multi-spectral camera to obtain the remote sensing image of the typical symptom areas of PWD, and the orthophoto panoramic image of this area was obtained through band registration, splicing and radiometric calibration. The diceased tree in the experimental area was identified and located by means of system automatic identification and manual correction. The results showed that 83 diceased trees suffered by PWD were identified in the aerial photography test area, and their distribution map and coordinate points also succeeded in obtaining. The field verification showed that the monitoring accuracy was 95.2%, the coordinate point accuracy was 2.6 m while the missed detection rate was 9.8%, which basically meets the needs of large-scale monitoring PWD.

参考文献/References:

[1]叶建仁.松材线虫病在中国的流行现状、防治技术与对策分析[J].林业科学,2019,55(9):1-10.
[2]杜华强,葛宏立,范文义,等.马尾松针叶光谱特征与其叶绿素含量间关系研究[J].光谱学与光谱分析,2009,29(11):3033-3037.
[3]马菁,张晓丽,刘维,等.松材线虫病对马尾松蒸腾速率和光谱特征的影响[J].东北林业大学学报,2013,41(11):115-117.
[4]张素兰,覃菊,唐晓东,等.松材线虫危害下马尾松光谱特征与估测模型研究[J].光谱学与光谱分析,2019,39(3):865-871.
[5]黄明祥,龚建华,李顺,等.松材线虫病害高光谱时序与敏感特征研究[J].遥感技术与应用,2012,27(6):954-960.
[6]马跃,吕全,赵相涛,等.接种不同浓度松材线虫的黑松光谱学特征分析[J].山东农业科学,2012,44(11):12-16.
[7]刘宁, 张晓丽,王书涵,等.基于蒸腾速率与光谱特征的松材线虫病害预测[J].西北农林科技大学学报(自然科学版),2015,43(6):129-135.
[8]王震,张晓丽,安树杰.松材线虫病危害的马尾松林木光谱特征分析[J].遥感技术与应用,2007,22(3):367-370.
[9]SAARI H, PELLIKKA I, PESONEN L, et al. Unmanned aerial vehicle (UAV) operated spectral camera system for forest and agriculture applications[C]//Conference on Remote Sensing for Agriculture, Ecosystems, and Hydrology XlII/18th International Symposium On Remote Sensing,Prague, Czech Republic, 2011:19-21.
[10]黄宝华.无人机搭载多光谱相机监测松材线虫病的研究[J].广西林业科学, 2020,49,193(3):74-78.
[11]曾全,孙华富,杨远亮,等.无人机监测松材线虫病的精度比较[J].四川林业科技,2019,40(3):92-95.
[12]李华玉,陈永富,陈巧,等. 基于遥感技术的森林树种识别研究进展[J].西北林学院学报,2021,36(6): 220-229.
[13]WULDER M A, WHITE J C, COOPS N C, et al. A procedure for mapping and monitoring mountain pine beetle red attack forest damage using Landsat imagery[R]. Victoria, British Columbia: Natural Resources Canada, Canadian Forest Service (CFS), Pacific Forestry Centre. 2006:1-28.
[14]MEDDENS A J, HICKE J A, VIERLING L A, et al. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery[J].Remote Sensing of Environment, 2013,132: 49-58.
[15]SKAKUN R S, WULDER M A, FRANKLIN S E. Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage [J].Remote Sensing of Environment, 2003,86(4):433-443.
[16]段四波,阎广建.山区遥感图像地形校正模型研究综述[J]. 北京师范大学学报(自然科学版),2007,43(3):362-366.
[17]武红敢,牟晓伟,杨清钰,等.无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用[J].林业资源管理,2019(2):109-115.
[18]黄焕华,马晓航,黄华毅,等.利用固定翼无人机监测松材线虫病疫点枯死松树的初步研究[J].环境昆虫学报,2018,40(2):306-313.

相似文献/References:

[1]刘云鹏,王爱忠,解春霞,等.松褐天牛高效诱捕器的筛选比较试验[J].江苏林业科技,2018,45(01):14.[doi:10.3969/j.issn.1001-7380.2018.01.004]
 LIU Yun-peng,WANG Ai-zhong,XIE Chun-xia,et al.Comparative trial on high efficiency trap for  Monochamus alternatus[J].Journal of Jiangsu Forestry Science &Technology,2018,45(03):14.[doi:10.3969/j.issn.1001-7380.2018.01.004]
[2]周爱东,徐小明,王岚,等.松材线虫病发生34 a的综合防控——以江苏省镇江市为例[J].江苏林业科技,2019,46(04):54.[doi:10.3969/j.issn.1001-7380.2019.04.011]
 Zhou Aidong,Xu Xiaoming,Wang Lan,et al.Integrated control of pine wilt disease in the past thirtyyears in Zhenjiang City of Jiangsu Province[J].Journal of Jiangsu Forestry Science &Technology,2019,46(03):54.[doi:10.3969/j.issn.1001-7380.2019.04.011]
[3]刘云鹏,解春霞,李莉,等.无人机遥感监测技术在松材线虫病疫情监测中的应用探讨[J].江苏林业科技,2022,49(02):52.[doi:10.3969/j.issn.1001-7380.2022.02.010]
 Liu Yunpeng,Xie Chunxia,Li Li,et al.Discussion on the application of UAV remote sensing technology in monitoring of PWD[J].Journal of Jiangsu Forestry Science &Technology,2022,49(03):52.[doi:10.3969/j.issn.1001-7380.2022.02.010]

备注/Memo

备注/Memo:
收稿日期:2022-04-07;修回日期:2022-04-28
基金项目:江苏省林业科技创新与推广项目“无人机多光谱遥感在松材线虫病疫情监测中的应用与示范”(LYKJ[2020]10);中央财政林业科技推广示范资金项目“松材线虫病遥感监测与分类治理技术集成示范”(苏[2021]TG05)
作者简介:张林燕(1982- ),女,山东聊城人,工程师,硕士。主要从事林业有害生物防治和植物检疫等工作。
*通信作者:刘云鹏(1978- ),男,安徽宿州人,副研究员,硕士。主要从事农林病虫害防治技术研究和推广工作。
更新日期/Last Update: 2022-08-08