参考文献/References:
[1]叶建仁.松材线虫病在中国的流行现状、防治技术与对策分析[J].林业科学,2019,55(9):1-10.
[2]徐华潮,骆有庆,张琴,等.松材线虫自然侵染对黑松、马尾松针叶含水量、色素及抗氧化酶活性的影响[J].林业科学,2012,48(11):140-143.
[3]徐华潮,骆有庆,邹力骏,等.松材线虫自然侵染后对不同松树组织结构的影响[J].植物病理学报,2013,43(1):35-41.
[4]LIU J M,FENG Z X. On the patholgy of pine wilt discase caused by Bursaphelenchus xylophilus (in Chinese) [J]. Acta Phytopathologica Sinica,1995,25(2):171-174.
[5]徐华潮,骆有庆,张廷廷,等.松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J].光谱学与光谱分析,2011,31(5):1352-1356.
[6]张素兰,覃菊,唐晓东,等.松材线虫危害下马尾松光谱特征与估测模型研究[J].光谱学与光谱分析,2019,39(3): 865-871.
[7]黄明祥,龚建华,李顺,等.松材线虫病害高光谱时序与敏感特征研究[J].遥感技术与应用,2012,27(6):954-960.
[8]马跃, 吕全,赵相涛,等.接种不同浓度松材线虫的黑松光谱学特征分析[J].山东农业科学,2012,44(11):12-16.
[9]王震,张晓丽,安树杰.松材线虫病危害的马尾松林木光谱特征分析[J].遥感技术与应用,2007,22(3):367-370.
[10]孔鹏飞.无人机低空遥感测绘作业流程及主要质量控制要点探析[J].低碳世界,2016(35):132-133.
[11]洪宇,龚建华,胡社荣,等.无人机遥感影像获取及后续处理探讨[J].遥感技术与应用,2008,23(4):462-466.
[12]李华玉,陈永富,陈巧,等.基于遥感技术的森林树种识别研究进展[J].西北林学院学报,2021,36(6):220-229.
[13]ZHANG K W,HU B X. Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles[J].Remote Sensing,2012,4(6):1741-1757.
[14]TUOMINEN S, NASI R, HONKAVAARA E, et al. Tree species recognition in species rich area using UAV-borne hyperspectral imagery and stereo-photogrammetric point cloud[J].ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2017(XLII-3/W3):185-194.
[15]刘遐龄,程多祥,李涛,等.无人机遥感影像的松材线虫病危害木自动监测技术初探[J].中国森林病虫, 2018,37(5):16-21.
[16]李卫正,申世广,何鹏,等.低成本小型无人机遥感定位病死木方法[J].林业科枝开发,2014,28(6):102-106.
[17]SAARI H, PELLIKKA I, PESONEN L, et al. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications[C]//Conference on Remote Sensing for Agriculture, Ecosystems, and Hydrology XlII/18th International Symposium On Remote Sensing.Prague, Czech Republic, 2011:19-21.
[18]褚东花,李德峰,宋西强.基于多光谱遥感的松材线虫病受害木识别方法[J].绿色科技,2021,23(9):178-180.
[19]黄宝华.无人机搭载多光谱相机监测松材线虫病的研究[J].广西林业科学,2020,49(3):380-384.
[20]FASSNACHT F E, LATIFI H, GHOSH A, et al. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality[J].Remote Sensing of Environment,2014,140(1):533-548.
[21]李嘉祺,吴开华,张垚,等.基于无人机光谱遥感和 AI 技术建立松材线虫害监测模型[J].电子技术与软件工程,2021(8):91-94.
[22]王雪晶,魏仲慧,孙文军, 等.彩色遥感图像的几何校正[J].系统工程与电子技术,2002,24(12):126-128.
[23]王学平.遥感图像几何校正原理及效果分析[J].计算机应用与软件,2008,25(9):102-105.
[24]厍向阳,李崇贵,姚顽强.遥感图像几何校正的支持向量机算法研究[J].西安电子科技大学学报(自然科学版),2011,38(5):144-153.
[25]LOWE D G. Object recognition from local scale-invariant features[C]// International Conference on Computer Vision, Kerkyra, Greece. 1999:1150-1157.
[26]MOREL J M, YU G S . ASIFT: A new framework for fully affine invariant image comparison[J].SIAM Journal on Imaging Sciences,2009,2(2):438-469.
[27]ABDEL-HAKIM A E, FARAG A A.CSIFT: A SIFT descriptor with color invariant characteristics [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006:1978-1983.
[28]LUO J,GWUN O.SURF applied in panorama image stitching[C]//2nd International Conference on Image Processing Theory Tools and Applications. 2010:495-499.
[29]周佳欣,徐梦云,刘建全.基于改进的SIFT算法的图像配准方法[J].工业控制计算机,2019,32(5):97-101.
[30]贠培东,曾永年,历华.多尺度遥感影像融合技术及其算法研究进展[J].遥感信息,2006(6):67-71.
[31]DURKIN J,蔡竞峰,蔡自兴.决策树技术及其当前研究方向[J].控制工程,2005,12(1):15-19.
[32]戴艳丽.分析数据挖掘中决策树算法及其应用[J].科技传播,2015(12):33-34.
[33]黄芳芳,雷鸣,张力,等.基于随机森林和决策树的马尾松松材线虫病监测方法[J].信息通信,2019(12):32-35.
[34]胡根生,张学敏,梁栋.基于WWSVDD 多分类的遥感图像病害松树识别[J].北京邮电大学学报,2014,37(2):23-27.
[35]张学敏.基于支持向量数据描述的遥感图像病害松树识别研究[D].合肥:安徽大学,2014.
[36]武红敢,牟晓伟,杨清钰,等.无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用[J].林业资源管理,2019(2):109-115.
[37]黄华毅,马晓航,扈丽丽,等.Fast R-CNN 深度学习和无人机遥感相结合在松材线虫病监测中的初步应用研究[J].环境昆虫学报,2021,43(5):1295-1303.
相似文献/References:
[1]陈志银,高 悦,仇才楼,等.对加快发展江苏林用无人机开发应用的思考[J].江苏林业科技,2015,42(04):48.[doi:10.3969/j.issn.1001-7380.2015.04.012]
CHEN Zhi-yin,GAO Yue,QIU Cai-lou,et al.Consideration on speeding development and application of forestry UAV in Jiangsu Province[J].Journal of Jiangsu Forestry Science &Technology,2015,42(02):48.[doi:10.3969/j.issn.1001-7380.2015.04.012]
[2]徐丽丽,解春霞,刘云鹏,等.我国农林业无人机研究文献计量学分析[J].江苏林业科技,2017,44(01):37.[doi:10.3969/j.issn.1001-7380.2017.01.008]
[3]刘云鹏,王爱忠,解春霞,等.松褐天牛高效诱捕器的筛选比较试验[J].江苏林业科技,2018,45(01):14.[doi:10.3969/j.issn.1001-7380.2018.01.004]
LIU Yun-peng,WANG Ai-zhong,XIE Chun-xia,et al.Comparative trial on high efficiency trap for Monochamus alternatus[J].Journal of Jiangsu Forestry Science &Technology,2018,45(02):14.[doi:10.3969/j.issn.1001-7380.2018.01.004]
[4]黄云鹏,管建仲,林峰铭,等.无人机在米槠虫害防治中的应用与效果研究[J].江苏林业科技,2018,45(05):28.[doi:10.3969/j.issn.1001-7380.2018.05.006]
Huang Yunpeng,Guan Jianzhong,Lin Fengming,et al.Research on application and effect of UAV in prevention and control of pests in Castanopsis carlesii[J].Journal of Jiangsu Forestry Science &Technology,2018,45(02):28.[doi:10.3969/j.issn.1001-7380.2018.05.006]
[5]周爱东,徐小明,王岚,等.松材线虫病发生34 a的综合防控——以江苏省镇江市为例[J].江苏林业科技,2019,46(04):54.[doi:10.3969/j.issn.1001-7380.2019.04.011]
Zhou Aidong,Xu Xiaoming,Wang Lan,et al.Integrated control of pine wilt disease in the past thirtyyears in Zhenjiang City of Jiangsu Province[J].Journal of Jiangsu Forestry Science &Technology,2019,46(02):54.[doi:10.3969/j.issn.1001-7380.2019.04.011]
[6]林春穆.基于多光谱数据初探野生长叶榧分布光谱特征[J].江苏林业科技,2022,49(01):28.[doi:10.3969/j.issn.1001-7380.2022.01.005]
Lin Chunmu.Identification of distribution of wild Torreya jackii Chun in Jiangshi Nature Reserve based on spectral characteristics[J].Journal of Jiangsu Forestry Science &Technology,2022,49(02):28.[doi:10.3969/j.issn.1001-7380.2022.01.005]
[7]张林燕,徐丽丽,李莉,等.无人机多光谱遥感技术监测松材线虫病疫木研究[J].江苏林业科技,2022,49(03):22.[doi:10.3969/j.issn.1001-7380.2022.03.004]
Zhang Linyan,Xu lili,Li Li,et al.Application of UAV multis-pectral remote sensing technology inmonitoring dead trees of pine wilt disease (PWD)[J].Journal of Jiangsu Forestry Science &Technology,2022,49(02):22.[doi:10.3969/j.issn.1001-7380.2022.03.004]