[1]周洁,宋雪晴,何旭东,等.柳树 SjMIPS 基因的克隆及其表达分析[J].江苏林业科技,2016,43(06):1-5.[doi:10.3969/j.issn.1001-7380.2016.06.001 ]
 ZHOU Jie,SONG Xue-qing,HE Xu-dong,et al.Molecular cloning and expression analysis of MIPS gene from Salix under salt stress[J].Journal of Jiangsu Forestry Science &Technology,2016,43(06):1-5.[doi:10.3969/j.issn.1001-7380.2016.06.001 ]
点击复制

柳树 SjMIPS 基因的克隆及其表达分析()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第43卷
期数:
2016年06期
页码:
1-5
栏目:
试验研究
出版日期:
2016-12-30

文章信息/Info

Title:
Molecular cloning and expression analysis of MIPS gene from Salix under salt stress
文章编号:
1001-7380(2016)06-0001-05
作者:
周洁1宋雪晴2何旭东1 王保松1
1. 江苏省林业科学研究院, 江苏南京211153;
2. 上海市七宝德怀特高级中学,上海201101
Author(s):
ZHOU Jie1SONG Xue-qing2 HE Xu-dong1 WANG Bao-song1
1.Jiangsu Academy of Forestry, Nanjing 211135,China;
2. Shanghai Qibao Dwight High School,Shanghai 201101,China
关键词:
柳树肌醇磷酸合成酶肌醇基因克隆盐胁迫表达
Keywords:
Salix sp. Myo-inositol phosphate synthase Myo-inositol Gene Cloning Salt Stress Expression
分类号:
S792.12;Q943.2
DOI:
10.3969/j.issn.1001-7380.2016.06.001
文献标志码:
A
摘要:
肌醇磷酸合成酶(MIPS)以葡萄糖-6-磷酸为合成前体,是肌醇合成过程中关键酶。MIPS生成的肌醇在耐盐植物的耐盐机制中起到渗透压调节物的作用。该研究从柳树(Salix Jiangsuensis 2345)叶片中成功克隆出MIPS基因,命名为SjMIPS。对扩增的基因进行生物信息学分析显示柳树SjMIPS基因包含1 533 bp的开放阅读框,编码1个511个氨基酸的蛋白质。蛋白质结构域分析显示SjMIPS基因含有4个保守的结构域,结构域1(GWGGNNG),结构域2(LWTANTERY),结构域3(NGSPQNTFVPG)和结构域4(SYNHLGNNDG),属于典型的MIPS基因。系统进化树分析表明柳树SjMIPS基因与杨树PtMIPS基因亲缘关系较近。实时荧光定量PCR结果显示柳树SjMIPS基因在171 mM NaCl盐胁迫处理24—48 h后上调,表明柳树MIPS基因是盐胁迫诱导型基因。该研究表明柳树SjMIPS基因为盐胁迫应答基因,在参与肌醇的生物合成、调节渗透压方面起着重要作用。
Abstract:
Myo-inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, using glucose-6-phosphate as the initial precursor. MIPS producing myo-inositol plays a pivotal role in protection mechanisms in salt-tolerant plant species. In this research, a MIPS gene was cloned from salt-treated leaves of Salix Jiangsuensis 2345 and named SjMIPS. SjMIPS contained a 1 533 bp of the largest open reading frame,encoding 511 amino acids. Protein alignment showed SjMIPS contained four complete conserved domains, Domain 1(GWGGNNG),Domain 2(LWTANTERY),Domain 3 (NGSPQNTFVPG) and Domain 4(SYNHLGNNDG). Phylogenetic analysis showed that SjMIPS was closer to MYBs from Populus trichocarpa. Real-time PCR analysis showed SjMIPS was in response to salt stress after treated with 171mM NaCl for 24, 48 h, indicating that SjMIPS was responsive to salt. It was concluded that SjMIPS was a salt responsive gene and its expression product might function as compatible solute for protection against salt stress in Salix.

参考文献/References:

[1]MAJUMDER A L, JOHNSON M D, HENRY S A. 1L-myo-inositol-1-phosphate synthase [J] . Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1997,1348(1-2): 245-256.
[2]LOEWUS F A, MURTHY P P N. Myoinositol metabolism in plants [J]. Plant Science, 2000, 150(1): 1-19.
[3]TAJI T, TAKAHASHI S, SHINOZAKI K. Inositols and their metabolites in abiotic and biotic stress responses [J]. Sub-cellular biochemistry, 2006, 39(190):239-264.
[4]TAJI T, OHSUMI C, IUCHI S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal, 2002, 29(4): 417-426.
[5]HITZ W D, CARLSON T J, KERR P S, et al. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds [J]. Plant Physiology, 2002, 128(2):650-660.
[6]KELLER R, BREARLEY C A, TRETHEWEY R N, et al. Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase[J]. The Plant Journal, 1998, 16(4):403-410.
[7]KARNER U, PETERBAUER T, RABOY V, et al. Myoinositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds [J]. Journal of Experimental Botany, 2004, 55(405):19811987.
[8]NELSON D E, RAMMESMAYER G, BOHNERT H J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance [J]. The Plant Cell, 1998, 10(5):753-764.
[9]MAJEE M, MAITRA S, DASTIDAR K G, et al. A novel salt-tolerant L-myo-inositol-1- phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning,bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype [J]. Journal of Biological Chemistry, 2004, 279(27): 28539 -28552.
[10]MAJUMDER A L, CHATTERJEE A, GHOSH D K, et al. Diversification and evolution of L-myoinositol 1-phosphate synthase [J]. FEBS Letters, 2003, 553(1-2):3-10.
[11]ABREU E F M, ARAGAO F J L. Isolation and characterization of a myo-inositol-1- phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress [J]. Annals of Botany, 2007, 99(2):285-292.
[12]RAY S, PATRA B, DAS-CHATTERJEE A, et al. Identification and organization of chloroplastic and cytosolic L-myoinositol-1-phosphate synthase coding gene (s) in Oryza sativa: comparison with the wild halophytic rice, Porteresia coarctata[J]. Planta, 2010, 231(5):1211-1227.
[13]TAN J, WANG C, XIANG B, et al. Hydrogen peroxide and nitric oxide mediated cold-and dehydration-induced myoinositol phosphate synthase that confers multiple resistances to abiotic stresses [J]. Plant Cell & Environment, 2013,36(2):288-299.
[14]LACKEY K H, POPE P M, JOHNSON M D. Expression of 1L-myoinositol-1-phosphate synthase in organelles [J]. Plant Physiology, 2003, 132(4):2240-2247.
[15]NELSON D E, BOHNERT H J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance [J]. The Plant Cell, 1998, 10(5):753-764.
[16]NELSON D E, KOUKOUMANOS M, BOHNERT H J. Myoinositol-dependent sodium uptake in ice plant [J]. Plant Physiology, 1999, 119(1):165-172.
[17]HASEGAWA P M, BRESSAN R A, BOHNERT H J. Plant cellular and molecular responses to high salinity [J]. Annual Review of Plant Biology, 2000, 51(51):463-499.
[18]WANG W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta, 2003, 218(1):1-14.
[19]VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations [J]. Current Opinion in Biotechnology, 2005,16(2):123-132.

相似文献/References:

[1]王红玲,王瑞刚*,施士争*,等.柳林污水处理系统净化效率研究[J].江苏林业科技,2015,42(04):5.[doi:10.3969/j.issn.1001-7380.2015.04.002]
 WANG Hong-ling,WANG Rui-gang*,SHI Shi-zheng*,et al.Research on the purification efficiency for artificial wastewater by sewage treatment system of willow[J].Journal of Jiangsu Forestry Science &Technology,2015,42(06):5.[doi:10.3969/j.issn.1001-7380.2015.04.002]
[2]罗桂杰,刘 旭,金 倩.释放花绒寄甲对柳树光肩星天牛的防治效果[J].江苏林业科技,2016,43(04):14.[doi:10.3969/j.issn.1001-7380.2016.04.004]
 LUO Gui-jie,LIU Xu,JIN Qian.Study on the effect of release of Dastarcus helophoroides to control Anoplophora glabripennis in Suqian[J].Journal of Jiangsu Forestry Science &Technology,2016,43(06):14.[doi:10.3969/j.issn.1001-7380.2016.04.004]
[3]王伟伟,姚玲,何开跃,等.不同柳树花粉离体培养及活力测定方法比较研究[J].江苏林业科技,2018,45(04):1.[doi:10.3969/j.issn.1001-7380.2018.04.001]
 Wang Weiwei,Yao Ling,He Kaiyue,et al.Comparative study on in vitro pollen germination and viability evaluation of different willow species[J].Journal of Jiangsu Forestry Science &Technology,2018,45(06):1.[doi:10.3969/j.issn.1001-7380.2018.04.001]
[4]王伟伟,何旭东,郑纪伟,等.盐碱地柳树生物能源林专用品种的选育[J].江苏林业科技,2018,45(06):1.[doi:10.3969/j.issn.1001-7380.2018.06.001]
 Wang Weiwei,He Xudong,Zheng Jiwei,et al.Breeding of special varieties of willow bio-energy forest in saline-alkali soil[J].Journal of Jiangsu Forestry Science &Technology,2018,45(06):1.[doi:10.3969/j.issn.1001-7380.2018.06.001]
[5]郭群,董德友,闻朝鲜,等.长江中下游滩地柳树无性系造林对比试验[J].江苏林业科技,2019,46(04):27.[doi:10.3969/j.issn.1001-7380.2019.04.006]
[6]郑纪伟,教忠意,王保松,等.柳树新品种指纹图谱构建[J].江苏林业科技,2020,47(02):1.[doi:10.3969/j.issn.1001-7380.2020.02.001]
 Zheng Jiwei,Jiao Zhongyi,Wang Baosong,et al.Construction of fingerprint for new Salix varieties[J].Journal of Jiangsu Forestry Science &Technology,2020,47(06):1.[doi:10.3969/j.issn.1001-7380.2020.02.001]
[7]黄瑞芳,张忠,曹瑶,等.铅胁迫下柳树4个无性系生长和生理特性的变化[J].江苏林业科技,2020,47(02):35.[doi:10.3969/j.issn.1001-7380.2020.02.007]
 Huang Ruifang,Zhang Zhong,Cao Yao,et al.Growth and physiological traits of four Salix clones under lead stress[J].Journal of Jiangsu Forestry Science &Technology,2020,47(06):35.[doi:10.3969/j.issn.1001-7380.2020.02.007]
[8]张珏,黄瑞芳,韩杰峰.乔木柳4个无性系耐旱性的初步研究[J].江苏林业科技,2020,47(06):47.[doi:10.3969/j.issn.1001-7380.2020.06.010]
[9]何旭东,郑纪伟,王宇,等.柳树种质核DNA含量的流式测定[J].江苏林业科技,2021,48(01):1.[doi:10.3969/j.issn.1001-7380.2021.01.001]
 He Xudong,Zheng Jiwei,Wang Yu,et al.Evaluation of nuclear DNA content in willow germplasm by flow cytometry[J].Journal of Jiangsu Forestry Science &Technology,2021,48(06):1.[doi:10.3969/j.issn.1001-7380.2021.01.001]
[10]周洁,王保松.雌雄间性柳树自交子代当年生幼苗表型观测[J].江苏林业科技,2021,48(03):19.[doi:10.3969/j.issn.1001-7380.2021.03.005]
 Zhou Jie,Wang Baosong.Phenotypic characters in selfing generations of intersex willow[J].Journal of Jiangsu Forestry Science &Technology,2021,48(06):19.[doi:10.3969/j.issn.1001-7380.2021.03.005]

备注/Memo

备注/Memo:
收稿日期:2016-10-11;修回日期:2016-10-27
江苏省自然科学基金项目“柳树盐胁迫响应基因表达谱分析和重要耐盐基因鉴定”(BK20141039);国家自然科学基金项目“灌木柳盐胁迫基因表达谱的解析和重要耐盐基因的鉴定”(31400572);江苏省科技支撑(农业)项目“耐盐高生物量灌木柳新品种选育及高效栽培技术研究”(BE2013449)
作者简介:周洁(1986- ),女,江苏宜兴人,助理研究员,博士。主要从事林木分子育种研究。
更新日期/Last Update: 2016-12-30