参考文献/References:
[1]PLEGUEZUELO C R R, ZUAZO V H D, BIELDERS C, et al.Bioenergy farming using woody crops. A review[J]. Agronomy for Sustainable Development,2015,35(1):95-119.
[2]ARGUS G W. Salix (Salicaceae) distribution maps and a synopsis of their classification in North America, North of Mexico[J]. Harvard Papers in Botany, 2007, 12(2):335-368.
[3]施士争,潘明建,王保松,等.培育灌木柳生物质能源林的前景[J].江苏林业科技, 2006,33(3):1-5.
[4]王保松,施士争.中国柳树种质资源[M].北京:中国林业出版社,2018.
[5]JOFUKU K D, DEN BOER B G, VAN MONTAGU M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. Plant Cell,1994,6(9):1211.
[6]AUKERMAN M J.Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J].The Plant Cell,2003,15(11):2730-2741.
[7]KLUCHER K M, CHOW H, REISER L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2.[J]. Plant Cell, 1996, 8(2):137-53.
[8]GUILLAUMOT L W M A, GERMOT A, MEYTRAUD F, et al. Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix×marschlinsii)[J]. Journal of Plant Physiology, 2008, 165(9):1003-1010.
[9]MOOSE S P, SISCO P H. Glossy15, an APETELA2-like gene from maize that regulates leaf epidermal cell identity[J]. Genes & Development, 1997, 10(23):3018-3027.
[10]HU Y X, WANG Y X, LIU X F, et al. Arabidopsis RAV1 is down-regulated by brassino steroid and may act as a negative regulator during plant development[J]. Cell Research,2004,14(1):8-15.
[11]SOHN K H, LEE S C, JUNG H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance[J]. Plant Molecular Biology, 2006, 61(6):897-915.
[12]LI X J, LI M, ZHOU Y, et al. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity[J]. Plos One, 2015, 10(2): e0118056.
[13]ZHANG G Y, MING C, LI L C, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. Journal of Experimental Botany, 2009, 60(13):3781-3796.
[14]ZHU X L, QI L, LIU X, et al. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses[J]. Plant Physiology, 2014, 164(3):1499-1514.
[15]HONG J P, KIM W T. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang)[J]. Planta, 2005, 220(6):875-888.
[16]WU L, ZHANG Z, ZHANG H, et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing[J]. Plant Physiology, 2008, 148(4):1953-1963.
[17]ITO Y, KATSURA K, MARUYAMA K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant & Cell Physiology, 2006, 47(1):141-153.
[18]QIN F, KAKIMOTO M, SAKUMA Y, et al. Regulation and functional analysis of ZmDREB2A, in response to drought and heat stresses in Zea mays L[J]. Plant Journal, 2007, 50(1):54-69.
[19]WEI S, YANG Y, YIN T. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution[J]. Horticulture research, 2020, 7(1): 1-12.
[20]张珏,黄瑞芳,韩杰峰.乔木柳4个无性系耐旱性的初步研究[J].江苏林业科技, 2020, 47(6):47-49.
[21]GUO A, HE K, LIU D, et al. DATF: a database of Arabidopsis transcription factors[J].Bioinformatics,2005,21(10): 2568-2569.
[22]LOBO. Basic local alignment search tool (BLAST)[J]. Journal of Molecular Biology, 2008, 215(3):403-410.
[23]EDDY S R. Accelerated profile HMM searches[J]. Plos Computational Biology, 2011, 7(10):e1002195.
[24]LETUNIC I, DOERKS T, BORK P. SMART: recent updates, new developments and status in 2015[J]. Nucleic Acids Research, 2015, 43(Database issue):257-260.
[25]NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2):411-432.
[26]TANG Z, BLACQUIERE G, LEUS G. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21):2947-2948.
[27]TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology & Evolution, 2013, 30(12):2725-2729.
[28]CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[29]VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal of heredity, 2002, 93(1): 77-78.
[30]LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14), 1754-1760.
[31]WANG L, FENG Z, WANG X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seqdata[J]. Bioinformatics, 2010, 26(1):136-138.
[32]PUCHOLT P, SJ DIN P, WEIH M, et al. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes[J]. BMC Plant Biology, 2015, 15(1): 1-16.
[33]ZHUANG J, CAI B, PENG R H, et al. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa[J]. Biochemical & Biophysical Research Communications, 2008, 371(3):468-474.
[34]RAO G D, SUI J K, ZENG Y F, et al. Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia[J]. FEBS Open Bio, 2015, 5(1):132-137.
[35]LICAUSI F, GIORGI F M, ZENONI S, et al. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera[J]. BMC Genomics, 2010, 11(1):719.
[36]LICAUSI F, OHME-TAKAGI M, PERATA P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs[J]. New Phytologist, 2013, 199(3):639-649.
[37]KASUGA M, MIURA S, SHINOZAKI K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer[J]. Plant & Cell Physiology, 2004, 45(3):346-50.
[38]KRISHNASWAMY S, VERMA S, RAHMAN M H, et al. Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis [J]. Plant Molecular Biology, 2011,75(1-2):107-127.