参考文献/References:
[1]方福平,程式华.水稻科技与产业发展[J].农学学报,2018,8(1):92-98.
[2]陆娣,付雪娇,岳铭鉴.辽宁省水稻产业发展现状及政策建议[J].辽宁农业科学,2020(6):57-59.
[3]杜培军,夏俊士,薛朝辉,等.高光谱遥感影像分类研究进展[J].遥感学报,2016,20(2):236-256.
[4]杨庆振,郭敏,范新成.基于随机森林算法的高光谱遥感作物分类[J].测绘与空间地理信息,2023,46(4): 149-151,154.
[5]马玥,姜琦刚,孟治国,等.基于随机森林算法的农耕区土地利用分类研究 [J].农业机械学报,2016,47 (1): 297-303.
[6]王全才.随机森林特征选择[D].大连:大连理工大学,2011.
[7]李宏达.基于梯度提升树和随机森林的Sentinel-2多季相数据土地覆被分类研究[D].西宁:青海师范大学, 2021.
[8]FRIEDMAN J H.Stochastic gradient boosting[J]. Computational Statistics & Data Analysis,2002,38(4): 367-378.
[9]李根.基于梯度提升决策树的高速公路交织区汇入模型 [J].东南大学学报(自然科学版),2018,48(3): 563-567.
[10]PRODHAN F A, ZHANG J, HASAN S S, et al. A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions[J].Environmental Modelling & Software,2022,149:105327.
[11]马陇飞,萧汉敏,陶敬伟,等.基于梯度提升决策树算法的岩性智能分类方法[J].油气地质与采收率,2022, 29 (1): 21-29.
[12]秦泉,王冰,李峰,等.面向对象的GF-1卫星影像苹果树种植面积遥感提取研究——以山地丘陵地区的栖霞市为例[J].沙漠与绿洲气象,2020,14(2):129-136.
[13]周欣兴,赵林,张文杰,等.基于Sentinel-2多时相影像的果树种植区遥感提取[J].浙江农业学报,2022,34 (12): 2767-2777.
[14]WARNER T A,SHANK M C.Spatial autocorrelation analysis of hyperspectral imagery for feature selection[J]. Remote Sensing of Environment,1997,60(1):58-70.
[15]LUCAS R,BUNTING P,PATERSON M, et al. Classification of Australian forest communities using aerial photography, CASI and HyMap data[J]. Remote Sensing of Environment,2008,112(5):2088-2103.
[16]SAOUR H.An NDVI synthesis method for multi-temporal remote sensing images based on k-NN learning: a case based on Landsat 8 data[J].Remote Sensing Letters, 2018,9:6.
[17]张凌凡,陈忠辉,周天白,等.基于梯度提升决策树的露天矿边坡多源信息融合与稳定性预测[J].煤炭学报, 2020, 45 (S1): 173-180.
[18]LAWRENCE R, BUNN A, POWELL S, et al. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis[J]. Remote Sensing of Environment,2004, 90(3): 331-336.
[19]FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J].Annals of Statistics, 2001: 1189-1232.
[20]芦倩,赵维俊,黄鑫.基于高分辨率遥感影像的土壤类型制图研究[J].甘肃农业大学学报,2022,57(6):188-197.
[21]MARTIN M E, NEWMAN S D, ABER J D, et al. Determining forest species composition using high spectral resolution remote sensing data[J]. Remote Sensing of Environment, 1998, 65(3): 249-254.
[22]吴路华,陈丹,杨东妮.贵州武陵山区植被NDVI时空演变及其未来持续性特征[J].科学技术创新,2023(23):75-79.
[23]GRAJSKI K A, BREIMAN L, DI PRISCO G V, et al. Classification of EEG spatial patterns with a tree-structured methodology: CART[J]. IEEE Transactions on Biomedical Engineering, 1986 (12): 1076-1086.
[24]LIU W, CHEN Z, HU Y, et al. A systematic machine learning method for reservoir identification and production prediction[J]. Petroleum Science, 2023, 20(1): 295-308.
[25]许文宁,王鹏新,韩萍,等.Kappa系数在干旱预测模型精度评价中的应用——以关中平原的干旱预测为例[J].自然灾害学报,2011,20(6): 81-86.
[26]李慧.一种改进的随机森林并行分类方法在运营商大数据的应用[D].成都:电子科技大学,2015.
[27]罗信,闫奇奇,宋思涵,等.遥感影像中辫状河道提取的CART决策树分类方法研究[J].计算机时代,2022(8):6-9.
[28]党 涛,李亚妮,罗军凯,等.基于最小距离法的面向对象遥感影像分类[J].测绘与空间地理信息,2017,40(10):163-165,169,173.
[29]李一蜚,秦凯,李丁,等.基于梯度提升回归树算法的地面臭氧浓度估算[J].中国环境科学,2020,40(3): 997-1007.
[30]NIU W, LU J, SUN Y. Development of shale gas production prediction models based on machine learning using early data[J]. Energy Reports,2022,8:1229-1237.
[31]李根.基于梯度提升决策树的高速公路交织区汇入模型[J].东南大学学报(自然科学版),2018,48(3): 563-567.
[32]张凌凡,陈忠辉,周天白,等.基于梯度提升决策树的露天矿边坡多源信息融合与稳定性预测[J].煤炭学报, 2020, 45 (S1): 173-180.
[33]VAPNIK V, CHAPELLE O.Bounds on error expectation for support vector machines[J].Neural Computation, 2000,12(9): 2013-2036.
[34]方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38.