[1]刘根林.转基因Bt棉对根际土壤营养元素及酶活性的不同影响[J].江苏林业科技,2015,42(01):16-22.[doi:10.3969/j.issn.1001-7380.2015.01.004]
 LIU Gen-lin.Different effects of transgenic Bt cotton on rhizospheric soil nutrition and soil enzyme activities[J].Journal of Jiangsu Forestry Science &Technology,2015,42(01):16-22.[doi:10.3969/j.issn.1001-7380.2015.01.004]
点击复制

转基因Bt棉对根际土壤营养元素及酶活性的不同影响()
分享到:

江苏林业科技[ISSN:1001-7380/CN:32-1236/S]

卷:
第42卷
期数:
2015年01期
页码:
16-22
栏目:
试验研究
出版日期:
2015-02-20

文章信息/Info

Title:
Different effects of transgenic Bt cotton on rhizospheric soil nutrition and soil enzyme activities
文章编号:
1001-7380(2015)01-0016-07
作者:
刘根林
江苏省林业科学研究院,江苏 南京 211153
Author(s):
LIU Gen-lin
Jiangsu Academy of Forestry, Nanjing 211153, China
关键词:
转基因Bt棉 毒蛋白 土壤 酶活性
Keywords:
Transgenic Bt cotton Toxic protein Soil Enzyme activity
分类号:
S562; S154.3
DOI:
10.3969/j.issn.1001-7380.2015.01.004
文献标志码:
A
摘要:
在根际箱中种植2个转基因Bt棉品系99BC-4,99BC-8及其非Bt受体泗棉3(SM3)后,于花期采集其根际土壤,进行化学分析、微生物生物量测量、Bt毒蛋白检测和酶活性测定。结果显示,2品系的根际土壤内能检测出Bt毒蛋白。相比于受体,99BC-4或99BC-8根际土壤中N, Ca, Zn, Co 和Cu 元素含量高,而K, Mg元素的含量低,C/N, P和Mn的含量无显著差异; Fe元素,99BC-4根际土壤内含量低,99BC-8根际土壤内含量高。2个转基因Bt棉品系根际土壤内微生物生物量碳显著高于其受体,但微生物生物量碳与总碳量的比值, 99BC-4与受体相比,有显著差异。不同根际土壤内磷酸酶活性无显著差异,但相比于受体,FDA水解酶活性99BC-4根际土壤内显著升高,而99BC-8显著降低。推断Bt毒蛋白的存在可能通过改变某些微生物的代谢模式来刺激它们的生长,而已变的代谢模式似乎主宰着土壤中微生物的反应, 虽然其反应在2转基因Bt棉品系的根际土壤内可能会不一致。
Abstract:
After cultivation of 2 transgenic Bt cotton lines, 99BC-4 and 99BC-8, and their non-Bt recipient Simian3(SM3)in rhizoboxes, the rhizospheric soils during blooming period were sampled. By the chemical analysis, microbial biomass measurement, Bt toxic protein detection, enzyme activity determinations, this study revealed that the rhizospheric soils of 99BC-4 and 99BC-8 were positive for Bt endotoxin content. N, Ca, Zn, Co and Cu contents had higher values in the rhizospheric soils of 99BC-4/99BC-8 than in that of SM3 while lower values found with 2 Bt cotton lines for K and Mg contents. No significant differences(p>0.05)for C/N, P and Mn contents. For Fe content, a lower value was observed in 99BC-4 rhizospheric soil whereas a higher value in that of 99BC-8. Cmic (microbial biomass C)with 2 transgenic Bt cotton lines showed higher values with significant differences(p<0.05). But for Cmic/Ctotal, a significant difference(p<0.05)found between those of SM3 and 99BC-4 only. Compared with SM3, 2 Bt cotton lines performed more or less inconsistently as no significant difference emerged for phosphatase, a higher value in 99BC-4 rhizospheric soils but a lower value in that of 99BC-8 for FDA hydrolysis.It can be deduced that the presence of Bt endotoxin likely stimulated the growth of some microbes by altering their metabolic patterns, which seemed to dominate the microbial responses in the soil although the responses were inconsistent in 2 transgenic Bt lines.

参考文献/References:

[1] James C. Global status of commercialized biotech / GM Crops: 2009. ISAAA Brief No. 41. ISAAA: Ithaca, NY. 2009.
[2] Mendelson M, Kough J, Vaituzis Z, et al. Are Bt crops safe [J]? Nature Biotechnology, 2003, 21(9):1003-1009.
[3] Wu K M, Lu Y H, Feng H Q, et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science, 2008,321(5896):1676-1678.
[4] Marvier M, McCreedy C, Regetz J, et al. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates [J]. Science, 2007, 316(5830): 1475-1477.
[5] Icoz I, Saxena D, Andow D A, et al. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis [J]. Journal of Environmental Quality, 2008,37(2): 647-662.
[6] Lilley A K, Mark J B, Cartwright C, et al. Life in earth: the impact of GM plants on soil ecology [J]? Trends in Biotechnology, 2006, 24(1):9-14.
[7] Cartwright C D, Lilley A K. Mechanisms for investigating changes in soil ecology due to GMO releases[R]. Defra report EPG 1/5/214: Department for Environment, Food and Rural Affairs, 2004.
[8] Wolfenbarger L L, Phifer R P. The ecological risks and benefits of genetically engineered plants [J]. Science, 2000, 290(5499): 2088-2093.
[9] Chen L C(陈立昶), Yu J Z(俞敬忠), Ji S Y(吉守银), et al. Selection and breeding of new cotton variety Simian3 [J]. Acta Gossypii Sin(棉花学报), 1998,10(1):20-25.
[10] Rice C W,Moorman T B,Beare M.Role of microbial carbon and nitrogen in soil quality[A].In:Doran J D,Jones A J.Methods for assessing soil quality[M]. Madison:Soil Science Society of America,1996:203-215.
[11] Saxena D, Flores S, Stotzky G. Transgenic plants: insecticidal toxin in root exudates from Bt corn [J]. Nature, 1999, 402(6761):480.
[12] Tabatabai M A.Soil enzyme[A].In:Weaver R W,Angle J R,Bottomley P S.Mehods of soil anhysis:microbiological and biochemical properties[M]. Madison:Soil Science Society of America,1994:775-833.
[13] Sarkar B, Patra A K, Purakayastha T J, et al.Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment[J]. Soil Biology & Biochemistry,2004,36(4):571-579.
[14] Li Q C, Allen H L, Wollum II A G. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control [J]. Soil Biology & Biochemistry, 2004, 36(4):571-579.
[15] Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae [J]. Nature, 1999, 399(6733): 214.
[16] Zwahlen C, Hilbeck A, Gugerli P, et al. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field[J].Molecular Ecology, 2003a,12(3):765-775.
[17] Wandeler H, Bahylova J, Nentwig W. Consumption of two Bt and six non-Bt corn varieties by the woodlouse Porcellio scaber [J]. Basic and Applied Ecology, 2002, 3(4):357-365.
[18] Head G, Surber J B, Watson J A, et al. No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton(Bollgard)use [J]. Environmental Entomology, 2002, 31(1):30-36.
[19] Ream J E, Sims S R, and Leach J N. Aerobic soil degradation of Bacillus thuringiensis var kurstaki HD-73 protein bioactivity [R]. Monsanto: Monsanto Company Laboratory Project MSL 13267(11), 1994.
[20] Palm C J, Schaller D L, Donegan K K, et al. Persistence in soil of transgenic plant-produced Bacillus thuringiensis var kurstaki d-endotoxin [J].Canadian Journal of Microbiology, 1996(42):1258-1262.
[21] Sims S R, Holden L R. Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki Cry1A(b)protein in corn tissues[J]. Environmental Entomology, 1996,25(3):659-664.
[22] Icoz I, Stotzky G. Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil [J]. Transgenic Research, 2007, 17:609-620.
[23] Sims S R, Ream J E. Soil inactivation of the Bacillus thuringiensis subsp. kurstaki Cry IIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies [J]. Journal of Agricultural and Food Chemistry, 1997(45):1502-1505.
[24] Liu B, Zeng Q, Yan F M, et al. Effects of transgenic plants on soil micro-organisms [J]. Plant Soil, 2005, 271(1/2): 1-13.
[25] Weidenhamer J D, Romeo J T. Allelochemicals of Polygonella myriophylla: chemistry and soil degradation [J]. Journal of Chemical Ecology, 2004, 30(5):1067-1082.

备注/Memo

备注/Memo:
收稿日期:2014-10-22; 修回日期:2014-12-28
作者简介:刘根林(1963-),男,江苏姜堰人,高级工程师,博士,主要从事农林土壤微生物群落的分子生物学研究等工作。
更新日期/Last Update: 2015-02-20