[1]邱苏梅,李立文,万欣*,等.景观防护林带PM2.5与环境因子的关系研究[J].江苏林业科技,2024,51(03):10-15.[doi:10.3969/j.issn.1001-7380.2024.03.003]
 Qiu Sumei,Li Liwen,Wan Xin*,et al.Relationship between PM2.5 and environmental factors in landscape shelterbelt[J].Journal of Jiangsu Forestry Science &Technology,2024,51(03):10-15.[doi:10.3969/j.issn.1001-7380.2024.03.003]
点击复制

景观防护林带PM2.5与环境因子的关系研究()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第51卷
期数:
2024年03期
页码:
10-15
栏目:
试验研究
出版日期:
2024-06-30

文章信息/Info

Title:
Relationship between PM2.5 and environmental factors in landscape shelterbelt
文章编号:
1001-7380(2024)03-0010-06
作者:
邱苏梅12李立文2万欣13*邢玮13
1. 江苏省林业科学研究院,江苏 南京 211153;
2. 扬州大学园艺园林学院,江苏 扬州 225009;
3. 江苏扬州城市森林生态系统国家定位观测研究站,江苏 扬州 225000
Author(s):
Qiu Sumei12 Li Liwen2 Wan Xin13* Xing Wei13
1. Jiangsu Academy of Forestry, Nanjing 211153, China;
2. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
3.Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou 225000, China
关键词:
防护林带PM2.5环境因子随机森林模型长江
Keywords:
Shelterbelt PM2.5 Environmental factor Random forest model The Yangtze River
分类号:
S727.2;X513;X831
DOI:
10.3969/j.issn.1001-7380.2024.03.003
文献标志码:
A
摘要:
以长江沿岸的典型景观防护林为研究对象,选取榔榆、乌桕、落羽杉和薄壳山核桃4种纯林类型的景观防护林,于2023年监测PM2.5、风速、风向、光照度、空气湿度、空气温度、气压、土壤温度和土壤湿度的季度变化。发现乌桕防护林带PM2.5质量浓度变化幅度较大,夏季明显低于冬季,而其他3个防护林带PM2.5质量浓度季节变化幅度不大。通过相关性分析发现PM2.5与多个环境因子有相关性,尤其是乌桕防护林带。为了探究各环境因子对PM2.5的影响,该研究引入随机森林模型,结果表明在长江沿岸的典型景观防护林中空气湿度是影响PM2.5质量浓度的主要环境因子。该研究结果为未来建构科学合理的防护林体系提供了理论依据。
Abstract:
In this paper, with the typical landscape protection forest along the Yangtze River as the research object, four pure forest types of landscape protection forest including Ulmus parvifolia, Sapium sebiferum, Taxidium distichum and Carya illinoensis were selected to monitor the season change of PM2.5, wind speed, wind direction, light intensity, air humidity, air temperature, air pressure, soil temperature and soil humidity in 2023. We found that the variation range of PM2.5 concentration in S. sebiferum shelterbelts was large, which was significantly lower in summer than in winter while the seasonal variation range of PM2.5 concentration in the other three shelterbelts was not large. The correlation analysis found that PM2.5 was correlated with many environmental factors, especially in S. sebiferum shelterbelt. In order to explore the impact of various environmental factors on PM2.5, the random forest model was applied in this study. The result showed that air humidity was the main environmental factor affecting PM2.5 concentration in typical landscape shelterbelts along the Yangtze River. The results could provide a theoretical basis for constructing a scientific and reasonable shelterbelt system in the future.

参考文献/References:

[1]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境,2000(4):32-34.
[2]PANYACOSIT L. A review of particulate matter and health: focus on developing countries[R]. Vienna: International Institute for Applied Systems Analysis (IIASA), 2000.
[3]FENG J, CHAN C K, FANG M, et al. Characteristics of organic matter in PM2. 5 in Shanghai[J]. Chemosphere, 2006, 64(8): 1393-1400.
[4]车瑞俊,刘大锰,袁杨森.北京冬季大气颗粒物污染水平和影响因素研究[J].中国科学院研究生院学报,2007,24(5):556-563.
[5]MALEK E, DAVIS T, MARTIN R S, et al. Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA[J]. Atmospheric Research, 2006, 79(2): 108-122.
[6]BECKETT K P, FREER-SMITH P H, Taylor G. Particulate pollution capture by urban trees: effect of species and windspeed[J]. Global Change Biology, 2000, 6(8): 995-1003.
[7]ZHU J, SONG L. A review of ecological mechanisms for management practices of protective forests[J]. Journal of Forestry Research, 2021, 32(2): 435-448.
[8]ZHANG P, WANG N, YANG L, et al. Evaluation and sensitivity analysis of the ecosystem service functions of haze absorption by green space based on its quality in China[J]. Nature Conservation, 2020, 40: 93-141.
[9]李晓璐,叶锦东,章剑,等.乔木滞留大气颗粒物能力及其与叶表面微结构关系[J].中国城市林业,2022,20(3):22-28,120.
[10]孙应都,陈奇伯,李艳梅,等.昆明市6个绿化树种叶表微结构与滞尘能力的关系研究[J].西南林业大学学报(自然科学版),2019,39(3):78-85.
[11]JAMIL A, BAYRAM B. The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods[J]. Geocarto International, 2021, 36(7): 758-772.
[12]BECKETT K P, FREER-SMITH P H, TAYLOR G. Urban woodlands: their role in reducing the effects of particulate pollution[J]. Environmental pollution, 1998, 99(3): 347-360.
[13]赵珂,曹军骥,文湘闽.西安市大气PM2.5污染与城区居民死亡率的关系[J].预防医学情报杂志,2011,27(4):257-262.
[14]LI X, MA Y, WANG Y, et al. Temporal and spatial analyses of particulate matter (PM10 and PM2. 5) and its relationship with meteorological parameters over an urban city in northeast China[J]. Atmospheric Research, 2017,90: 185-193.
[15]WANG J, OGAWA S. Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan[J]. International Journal of Environmental Research and Public Health, 2015, 12(8): 9089-9101.
[16]CHENG L X, FAN M, CHEN L F, et al. Effects on the haze pollution from autumn crop residue burning over the Jing-Jin-Ji Region[J]. China Environmental Science, 2017, 37(8): 2801-2812.
[17]LIAO T, WANG S, AI J, et al. Heavy pollution episodes, transport pathways and potential sources of PM2. 5 during the winter of 2013 in Chengdu (China)[J]. Science of the Total Environment, 2017, 584(585): 1056-1065.
[18]贾雨龙.北京市四种道路防护林内PM2.5浓度变化规律研究[D].北京:中国林业科学研究院,2017.
[19]ZHOU B, SHEN H, HUANG Y, et al. Daily variations of size-segregated ambient particulate matter in Beijing[J]. Environmental Pollution, 2015, 197: 36-42.
[20]HAN B, ZHANG R, YANG W, et al. Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site[J]. Science of the Total Environment, 2016, 544: 319-329.
[21]HU S, ZHAO G, TAN T, et al. Current challenges of improving visibility due to increasing nitrate fraction in PM2. 5 during the haze days in Beijing, China[J]. Environmental Pollution, 2021, 290: 118032.
[22]YANG Y, LIAO H, LOU S. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(21): 13050-13065.
[23]LI J, CHEN H, LI Z, et al. Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations[J]. Advances in Atmospheric Sciences, 2015, 32: 898-908.
[24]LI L, HUANG C, HUANG H Y, et al. An integrated process rate analysis of a regional fine particulate matter episode over Yangtze River Delta in 2010[J]. Atmospheric Environment, 2014, 91: 60-70.
[25]NIEDZ'WIEDZ' T, UPIKASZA E B, MA ARZEWSKI , et al. Surface-based nocturnal air temperature inversions in southern Poland and their influence on PM10 and PM2. 5 concentrations in Upper Silesia[J]. Theoretical and Applied Climatology, 2021, 146(3): 897-919.
[26]LUO Y, LIU S, CHE L, et al. Analysis of temporal spatial distribution characteristics of PM2. 5 pollution and the influential meteorological factors using Big Data in Harbin, China[J]. Journal of the Air & Waste Management Association, 2021, 71(8): 964-973.
[27]DAVIES P E, HARRIS J H, HILLMAN T J, et al. The sustainable rivers audit: assessing river ecosystem health in the Murray-Darling Basin, Australia[J]. Marine and Freshwater Research, 2010, 61(7): 764-777.
[28]ECK T F, HOLBEN B N, KIM J, et al. Influence of cloud, fog, and high relative humidity during pollution transport events in South Korea: Aerosol properties and PM2. 5 variability[J]. Atmospheric Environment, 2020, 232: 117530.

备注/Memo

备注/Memo:
收稿日期:2024-03-07;修回日期:2024-04-09
基金项目:江苏省农业科技自主创新资金项目“江苏长江沿岸景观防护林构建与生态修复技术研究”(CX(19)1004);江苏省林业科技创新与推广项目“江苏高效农田防护林网构建模式研究”(LYKJ[2021]38)、“江苏省森林、湿地定位监测长期科研基地”(LYKJ[2020]21)
作者简介:邱苏梅(2003- ),女,四川巴中人,大学本科在读。E-mail:qiusumei1211@163.com
*通信作者:万欣(1983- ),女,山东济宁人,副研究员,博士。主要从事林业生态科学研究。E-mail:lkywanxin@163.com
更新日期/Last Update: 2024-07-30