[1]杨雪姣,张军,李全文,等.湿地公园建设对湿地生态系统韧性的影响——以南京长江新济洲国家湿地公园为例[J].江苏林业科技,2023,50(02):20-25.[doi:10.3969/j.issn.1001-7380.2023.02.004]
 Yang Xuejiao,Zhang Jun,Li Quanwen,et al.Effects of wetland park construction on ecosystem resilience:Nanjing Yangtze River Xinjizhou National Wetland Park as an example[J].Journal of Jiangsu Forestry Science &Technology,2023,50(02):20-25.[doi:10.3969/j.issn.1001-7380.2023.02.004]
点击复制

湿地公园建设对湿地生态系统韧性的影响——以南京长江新济洲国家湿地公园为例()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第50卷
期数:
2023年02期
页码:
20-25
栏目:
试验研究
出版日期:
2023-04-30

文章信息/Info

Title:
Effects of wetland park construction on ecosystem resilience:Nanjing Yangtze River Xinjizhou National Wetland Park as an example
文章编号:
1001-7380(2023)02-0020-06
作者:
杨雪姣1张军2李全文2庄犁1钟晶晶1张汉朝3*
1. 南京朴厚生态科技有限公司,江苏 南京 210033;
2. 南京长江新济洲国家湿地公园管理中心,江苏 南京 211110;
3. 南京大学生命科学学院,江苏 南京 210023
Author(s):
Yang Xuejiao1 Zhang Jun2 Li Quanwen2 Zhuang Li1 Zhong Jingjing1 Zhang Hanchao3*
1. Nanjing Puhou Ecological Technology Co., Ltd., Nanjing 210033, China;
2. Nanjing Yangtze River Xinjizhou National Wetland Park, Nanjing 211110, China;
3. School of Life Sciences, Nanjing University, Nanjing 210023, China
关键词:
湿地公园生态系统韧性生境质量生态系统评价新济洲
Keywords:
Wetland parkEcosystem resilienceHabitat qualityEcosystem assessmentXinjizhou
分类号:
Q178.1+1;Q178.1+2
DOI:
10.3969/j.issn.1001-7380.2023.02.004
文献标志码:
A
摘要:
湿地公园能对湿地资源进行有效保护,是目前湿地保护管理的主要形式之一。该研究利用2020—2021年高频水质自动监测数据,分析不同时期湿地公园的水质状况,并基于生态系统稳态转换理论,计算时间序列的方差、自相关系数、回复率、变异系数等韧性指标,以探究国家湿地公园建设对南京长江新济洲湿地韧性的影响,为湿地公园的管理建设提供理论指导。结果表明:(1)2021年水体浊度和氧化还原电位显著高于2020年,2020年和2021年水体叶绿素a含量并没有显著差异。(2)从韧性指标来看,2021年水体浊度和氧化还原电位的方差、变异系数和时间自相关系数均小于2020年,同时回复率大于2020年;2021年水体叶绿素a的自相关系数显著小于2020年,回复率大于2020年。这些指标均表明新济洲湿地公园2021年系统韧性高于2020年。(3)从水体浊度的角度来看,新济洲湿地管理维护频率下降导致水体浊度增加,水质相对变差,但其韧性却在提高,表明相对较低的管理维护频率有助于提升系统韧性。该研究基于稳态转换理论分析了新济洲湿地公园的韧性,为湿地公园的建设提供了理论指导基础。
Abstract:
“Wetland park”is one of the main forms of wetland conservation and management at present. Based on the high-frequency automatic water quality data from 2020 to 2021, this study analyzed the water quality of wetland parks in different periods, and calculated the variance, autocorrelation coefficient, return rate, coefficient of variation based on the regime shift theory of ecosystem, so as to explore the influence of the construction of national wetland park on the resilience of Nanjing Yangtze River Xinjizhou Wetland to provide theoretical guidance for the management and construction of the Wetland Park. The results showed that: (1) Turbidity and ORP in 2021 were significantly higher than those in 2020, and chlorophyll a in 2020 and 2021 had no significant difference. (2) In terms of resilience indicators, the variance, coefficient of variation and autocorrelation coefficients of turbidity and ORP in 2021 were all smaller than those in 2020, and the return rate was higher than that in 2020. The autocorrelation coefficient of chlorophyll a in 2021 was significantly lower than that in 2020, and the return rate was higher than that in 2020. All these indicators indicated that the system resilience of Xinjizhou Wetland Park in 2021 was higher than that in 2020. (3) From the perspective of turbidity, the decrease of management and maintenance frequency of Xinjizhou Wetland led to the increase of water turbidity and the relative deterioration of water quality, but its resilience was improved, indicating that relatively low management and maintenance frequency was conducive to improving the resilience of the system. The resilience of Xinjizhou Wetland Park based on the regime shift theory was analyzed, which provides theoretical guidance for the construction of wetland park.

参考文献/References:

[1]MITSCH W J, BERNAL B, NAHLIK A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28(4): 583-597.
[2]韩大勇,杨永兴,杨杨,等.湿地退化研究进展[J].生态学报, 2012, 32(4): 289-303.
[3]杨阳,张亦.我国湿地研究现状与进展[J].环境工程, 2014, 32(7): 43-48,78.
[4]李春晖,郑小康,牛少凤,等.城市湿地保护与修复研究进展[J].地理科学进展,2009,28(2): 271-279.
[5]孙乾照,林海英,张美琦,等.滨海盐沼湿地生态修复研究进展[J].北京师范大学学报(自然科学版), 2021,57(1):151-158.
[6]TOWNSHEND J, ALTSTATT A, SUNGHEE K, et al. Change in the subtropical forest of eastern paraguay during the 1990s[R]. College Park, MD: Global Land Cover Facility, 2004.
[7]RODRIGUES A, AKCAKAYA H R, ANDELMAN S, et al. Global gap analysis: priority regions for expanding the global protected-area network [J]. BioScience, 2004, 54(12): 1092-1100.
[8]SCOTT J M, DAVIS F, CSUTI B, et al. Gap analysis: a geographic approach to protection of biological diversity [J].Wildlife Monographs, 1993,123: 3-41.
[9]HOLLING C S. Resilience and stability of ecological systems [J].Annual Review of Ecology and Systematics, 1973, 4(1): 1-23.
[10]GUNDERSON L H. Ecological resilience—in theory and application[J].Annual Review of Ecology and Systematics, 2000, 31: 425-439.
[11]尚二萍,摆万奇.湿地脆弱性评价研究进展[J].湿地科学, 2012,10(3): 378-384.
[12]SCHEFFER M, CARPENTER S R, DAKOS V, et al. Generic indicators of ecological resilience: inferring the chance of a critical transition[J].Annual Review of Ecology Evolution and Systematics, 2015, 46(1): 145-167.
[13]赵东升,张雪梅.生态系统多稳态研究进展[J].生态学报, 2021, 41(16): 6314-6328.
[14]徐驰,王海军,刘权兴,等.生态系统的多稳态与突变[J].生物多样性, 2020, 28(11): 1417-1430.
[15]SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions[J]. Science, 2012, 338(6105): 344-348.
[16]ARANI B M S, CARPENTER S R, LAHTI L, et al. Exit time as a measure of ecological resilience [J]. Science, 2021, 372(6547): 1168-1173.
[17]SEEKELL D A, CARPENTER S R, CLINE T J, et al. Conditional heteroskedasticity forecasts regime shift in a whole-ecosystem experiment[J]. Ecosystems, 2012, 15: 741-747.
[18]IBELINGS B W, PORTIELJE R, LAMMENS E H R R, et al. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study[J]. Ecosystems, 2007, 10: 4-16.
[19]SCHEFFER M, RINALDI S, GRAGNANI A, et al. On the dominance of filamentous cyanobacteria in shallow, turbid lakes[J]. Ecology, 1997, 78(1): 272-282.
[20]王世强,郭琦,邱小琮,等.太阳山湖群叶绿素a变化及与总氮、总磷关系[J].环境科学与技术, 2021, 44(9): 31-36.
[21]吴东浩,贾更华,吴浩云. 2007-2019年太湖藻型和草型湖区叶绿素a变化特征及影响因子[J]. 湖泊科学, 2021, 33(5): 1364-1375.
[22]SEEKELL D A, CARPENTER S R, PACE M L. Conditional heteroscedasticity as a leading indicator of ecological regime shifts [J]. American Naturalist, 2011, 178(4): 442-451.
[23]DAKOS V, CARPENTER S R, VAN NES E H, et al. Resilience indicators: prospects and limitations for early warnings of regime shifts[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1659): 20130263.
[24]DAKOS V. Identifying best-indicator species for abrupt transitions in multispecies communities[J]. Ecological Indicators, 2017, 94(11):494-502.
[25]CARPENTER S R, BROCK W A, COLE J J, et al. Leading indicators of phytoplankton transitions caused by resource competition [J]. Theoretical Ecology, 2009, 2(3): 139-148.
[26]CARPENTER S R, BROCK W A. Rising variance: a leading indicator of ecological transition [J]. Ecology Letters, 2006, 9(3): 308-315.
[27]WANG H J, WANG H Z, LIANG X M, et al. Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas[J]. Freshwater Biology, 2014, 59(8): 1659-1671.

相似文献/References:

[1]黄蓓丽,彭文惠,吴磊.东太湖生态湿地公园规划设计[J].江苏林业科技,2015,42(06):35.[doi:doi:10.3969/j.issn.1001-7380.2015.06.009]
 HUANG Bei-li,Joyce PENG,WU Lei.Research on the landscape planning of the East Taihu Wetland Park[J].Journal of Jiangsu Forestry Science &Technology,2015,42(02):35.[doi:doi:10.3969/j.issn.1001-7380.2015.06.009]
[2]朱铮宇,范竟成,张铭连.苏州市湿地公园鸟类评估指标研究[J].江苏林业科技,2016,43(04):27.[doi:10.3969/j.issn.1001-7380.2016.04.008]
 ZHU Zheng-yu,FAN Jing-cheng,ZHANG Ming-lian.Determination of the relevant environmental assessment indicator by surveying birds gathering in wetland parks within Suzhou Prefecture[J].Journal of Jiangsu Forestry Science &Technology,2016,43(02):27.[doi:10.3969/j.issn.1001-7380.2016.04.008]

备注/Memo

备注/Memo:
收稿日期:2023-01-05;修回日期:2023-01-29
作者简介:杨雪姣(1984- ),女,江苏无锡人,助理研究员,硕士。主要从事湿地生态学研究、湿地生态保护和修复技术研究。
*通信作者:张汉朝(1998- ),男,贵州毕节人,硕士研究生。主要从事景观生态学、生态系统韧性研究。
更新日期/Last Update: 2023-07-07