[1]林芳冰.基于NDVI的福州市植被覆盖时空变化及驱动因素分析[J].江苏林业科技,2024,51(01):30-35.[doi:10.3969/j.issn.1001-7380.2024.01.006]
 Lin Fangbing.Analysis of spatio-temporal changes and driving factors ofvegetation cover in Fuzhou City based on NDVI[J].Journal of Jiangsu Forestry Science &Technology,2024,51(01):30-35.[doi:10.3969/j.issn.1001-7380.2024.01.006]
点击复制

基于NDVI的福州市植被覆盖时空变化及驱动因素分析()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第51卷
期数:
2024年01期
页码:
30-35
栏目:
试验研究
出版日期:
2024-03-05

文章信息/Info

Title:
Analysis of spatio-temporal changes and driving factors ofvegetation cover in Fuzhou City based on NDVI
文章编号:
1001-7380(2024)01-0030-06
作者:
林芳冰
漳州市龙文环境监测站,福建 漳州 363000
Author(s):
Lin Fangbing
Zhangzhou Longwen Environmental Monitoring Station, Zhangzhou 363000, China
关键词:
NDVI福州市植被覆盖空间自相关GWR模型
Keywords:
NDVIFuzhou CityVegetation coverageSpatial autocorrelationGWR model
分类号:
Q948.15+6;S771.8;X87
DOI:
10.3969/j.issn.1001-7380.2024.01.006
文献标志码:
A
摘要:
基于2000年、2009年和2020年的Landsat遥感影像反演归一化植被指数(NDVI),从空间和时间2个维度分析了福州市近20 a的植被覆盖变化,利用空间自相关分析工具揭示了福州市NDVI的空间分布模式和聚类格局,采用GWR模型探究了福州市植被覆盖的驱动机制。结果表明:较低的NDVI主要分布在福州市区、东部沿海区域及闽清县和连江县的丘陵地带。在2个研究时期,退化的面积略大于改善的面积,说明研究区的植被覆盖在降低。在1 000 m×1 000 m尺度下,NDVI的空间聚类以高-高聚集和低-低聚集为主,低-低聚集主要分布在福州市区和东部沿海区域,高-高聚集主要分布在距离各区县行政中心较远的高山和丘陵地带。GWR模型能够很好地揭示高程和坡度因子对福州市植被覆盖的驱动机制,海拔越高,坡度越大,植被覆盖越好。
Abstract:
Based on Landsat remote sensing images from 2000, 2009, and 2020, the normalized difference vegetation index (NDVI) was retrieved to analyze the vegetation cover changes in Fuzhou City in the past 20 years from both spatial and temporal perspectives. The spatial autocorrelation analysis tool was used to reveal the spatial distribution pattern and clustering pattern of NDVI in Fuzhou City, and the GWR model was used to explore the driving mechanism of vegetation cover in Fuzhou City. The results indicate that the lower NDVI is mainly distributed in the urban area of Fuzhou, the eastern coastal area, and the hilly areas of Minqing County and Lianjiang County. During the two study periods, the area of degradation was slightly larger than the area of improvement, indicating a decrease in vegetation cover in the study area. At the 1 000 m×1 000 m scale, the spatial clustering of NDVI is mainly composed of high-high clustering and low-low clustering. low-low clustering is mainly distributed in the urban area of Fuzhou and the eastern coastal area, while high-high clustering is mainly distributed in high mountains and hilly areas far from the administrative centers of various districts and counties. The GWR model can effectively reveal the driving mechanism of elevation and slope factors on vegetation coverage in Fuzhou City. The higher the altitude and slope, the better the vegetation coverage.

参考文献/References:

[1]赵维清,李经纬,褚琳,等.近10年湖北省植被指数时空变化特征及其驱动力[J].生态学报,2019,39(20):7722-7736.

[2]徐涵秋.城市遥感生态指数的创建及其应用[J].生态学报,2013,33(24):7853-7862.
[3]黄悦悦,杨东,冯磊.近年来宁夏植被指数与气候生产力的时空变化[J].水力发电学报,2019,38(11):70-81.
[4]祝聪,彭文甫,张丽芳,等.2006—2016年岷江上游植被覆盖度时空变化及驱动力[J].生态学报,2019,39(5):1583-1594.
[5]杨荣荣,曹广超,曹生奎,等.祁连山南坡主要河谷NDVI时空变化及影响因素分析[J].广西植物,2021,41(3):429-437.
[6]徐涵秋.从增强型水体指数分析遥感水体指数的创建[J].地球信息科学,2008,10(6):6776-6780.
[7]马楠,白涛,蔡朝朝,等.基于NDVI的新疆植被覆盖变化特征分析[J].北方园艺,2022(22):145-154.
[8]李小文,曹春香,常超一.地理学第一定律与时空邻近度的提出[J].自然杂志,2007(2):69-71.
[9]夏铧,王腾飞,张京生,等.城市景观格局动态及空间自相关研究——以郑州白沙组团为例[J].西南大学学报(自然科学版), 2021, 43(9): 131-141.
[10]刘彦文,刘成武,何宗宜,等.基于地理加权回归模型的武汉城市圈生态用地时空演变及影响因素[J].应用生态学报, 2020, 31(3): 987-998.

相似文献/References:

[1]危金煌,樊仲谋*,胡喜生.2000—2020年福州市植被覆盖度时空变化分析[J].江苏林业科技,2021,48(06):10.[doi:10.3969/j.issn.1001-7380.2021.06.002]
 Wei Jinhuang,Fan Zhongmou*,Hu Xisheng.Spatio-temporal variations in vegetation coverage in Fuzhou City from 2000 to 2020[J].Journal of Jiangsu Forestry Science &Technology,2021,48(01):10.[doi:10.3969/j.issn.1001-7380.2021.06.002]

备注/Memo

备注/Memo:
收稿日期:2023-03-20;修回日期:2023-10-21
作者简介:林芳冰(1996- ),女,会计师。研究方向:生态经济和大气环境质量影响评价。
更新日期/Last Update: 2024-05-09