[1]宣艳,孙旭,向义龙,等.低场核磁共振技术对香樟种子水分变化的研究[J].江苏林业科技,2018,45(06):8-11.[doi:10.3969/j.issn.1001-7380.2018.06.002]
 Xuan Yan,Sun Xu,Xiang Yilong,et al.Analysis of internal moisture change of camphor seeds during drying by low field-NMR[J].Journal of Jiangsu Forestry Science &Technology,2018,45(06):8-11.[doi:10.3969/j.issn.1001-7380.2018.06.002]
点击复制

低场核磁共振技术对香樟种子水分变化的研究()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第45卷
期数:
2018年06期
页码:
8-11
栏目:
试验研究
出版日期:
2018-12-30

文章信息/Info

Title:
Analysis of internal moisture change of camphor seeds during drying by low field-NMR
文章编号:
1001-7380(2018)06-0008-04
作者:
宣艳1孙旭2向义龙1徐莉3杨静1高步红1唐颖1
1. 南京林业大学现代分析测试中心, 江苏南京210037;
2. 南京林业大学信息科学技术学院, 江苏南京210037;
3. 南京林业大学理学院,江苏南京210037
Author(s):
Xuan Yan1 Sun Xu2 Xiang Yilong1 Xu Li3 Yang Jing1 Gao Buhong1 Tang Ying1
1. Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China;
2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
3. College of Science, Nanjing Forestry University, Nanjing 210037, China
关键词:
核磁共振香樟种子水分变化弛豫时间反演谱相关性
Keywords:
Nuclear Magnetic Resonance(NMR)Camphor treeSeedMoisture changeTransverse relaxation timeInversion spectrumCorrelation
分类号:
Q64;Q944.59;Q945.6+6;S792.23
DOI:
10.3969/j.issn.1001-7380.2018.06.002
文献标志码:
A
摘要:
利用低场核磁共振技术可以分析干燥过程中香樟种子的弛豫特性。采集弛豫衰减信号,使用同时逐次再现技术(SIRT)得到氢核的横向弛豫时间(T2)反演图谱,并对不同阶段的香樟种子内部水分的分布、转换以及含水率与核磁共振信号量之间的相关性进行了分析。结果表明:干燥过程中香樟种子的干燥速率随着干燥温度的升高而增加,香樟种子中存在3种不同状态的水,分别是结合水、不易流动水和自由水。在干燥过程中结合水的峰位变化不大,不易流动水和自由水的峰位均有起伏现象产生,干基含水率与其核磁共振信号量之间有较显著的线性关系,相关系数达到0.984 4。在干燥和存储过程中,可通过测试低场核磁共振信号量快速得出香樟种子的含水率。 关键词:核磁共振;香樟;种子;水分变化;弛豫时间;反演谱;相关性
Abstract:
A low field NMR(Nuclear Magnetic Resonance) technique was used to collect the transverse relaxation attenuation signal of camphor seeds at different drying temperatures. The transverse relaxation time of the hydrogen nucleus was obtained by SIRT(Simultaneous Iterative Reconstruction Technique) inversion, and the correlation between the moisture content of the dry base and the amplitude of the NMR signal was studied at different stages. The results showed that the water in camphor seeds was mainly distributed as strongly bound water, weakly bound water and free water. During the drying process, the peak position of the strongly bound water remained unchanged, but the peak positions of the weakly bound water and the free water fluctuated. The drying rate increasesd with the increase of the drying temperature. There was a very significant linear relationship between the total NMR signal amplitude and moisture content of drying base, and the correlation coefficient reached 0.984 4.

参考文献/References:

[1]LIU J F, DENG L, WANG M ,et al. Lipase catalyzed synthesis of medium-chain biodiesel from Cinnamonum camphora seed oil [J]. Chinese Journal of Chemical Engineering, 2014,22(11-12):1215-1219.
[2]CHEN Y, DAI G. Antifungal activity of plant extracts against Colletotrichum lagenarium, the causal agent of anthracnose in cucumber[J]. Journal of the Science of Food & Agriculture, 2012, 92(9):1937-1943.
[3]YANG F, LONG E, WEN J, et al. Linalool, derived from Cinnamomum camphora(L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis, and inhibits infection of Schistosoma japonicum[J]. Parasites & Vectors, 2014, 7(1):1-13.
[4]ZUO Z, WANG B, YING B, et al. Monoterpene emissions contribute to thermotolerance in Cinnamomum camphora[J]. Trees, 2017, 31(6):1-13.
[5]耿敬章,刘军海.香樟籽油的响应面优化提取及其抗氧化研究[J].中国粮油学报, 2014, 29(2):57-61.
[6]RAN X M, LI Z H, FU X J, et al. Advancement of active compositions in leaves and seeds of camphor tree[J]. Food & Nutrition in China, 2010.
[7]周翔,莫建光,谢一兴,等.广西芳樟醇型樟树精油成分的GC-MS研究[J].食品科技,2011,36(1):282-285.
[8]HU J N, ZHANG B, ZHU X M, et al. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability[J]. Journal of Agricultural & Food Chemistry, 2011, 59(9):4771.
[9]厉秋岳,陆莲英,殷耀成,等.樟树籽核油制取中碳酸甘油三酸酯[J].中国粮油学报, 1988(s2):35-39.
[10]张绪坤,祝树森,黄俭花,等.用低场核磁分析胡萝卜切片干燥过程的内部水分变化[J].农业工程学报, 2012, 28(22):282-287.
[11]王雪媛,高琨,陈芹芹,等.苹果片中短波红外干燥过程中水分扩散特性[J].农业工程学报,2015, 31(12):275-281.
[12]李冰,尹青,殷丽君,等.香菇热风微波流态化的干燥特性与机理分析[J].中国食品学报,2015, 15(5):134-139.
[13]石芳,肖星凝,杨雅轩,等.基于低场核磁共振技术研究不同热风干燥工艺条件下香菇复水过程中的水分传递特性[J].食品与发酵工业, 2017, 43(10):144-149.
[14]刘宗博,张钟元,李大婧,等.双孢菇远红外干燥过程中内部水分的变化规律[J].食品科学,2016, 37(9):82-86.
[15]任广跃,曾凡莲,段续,等.利用低场核磁分析玉米干燥过程中内部水分变化[J].中国粮油学报,2016, 31(8):95-99.
[16]YU X, WANG Z, ZHANG Y, et al. Study on the water state and distribution of chinese dried noodles during the drying process[J].Journal of Food Engineering, 2018, 233.
[17]DU J, CHENG L, HONG Y, et al. Enzyme assisted fermentation of potato pulp: An effective way to reduce water holding capacity and improve drying efficiency[J]. Food Chemistry, 2018, 258:118.
[18]XU F, JIN X, ZHANG L, et al. Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods[J]. Food Research International, 2017, 96:191.
[19]WANG L, XU B G, WEI B X, et al. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying[J]. Ultrasonics Sonochemistry, 2018, 40(Pt A):619-628.
[20]CARR H Y, PURCELL E M. Effects of diffusion on free procession in NMR experiments[J]. Physical Review, 1954, 94(3):630-638.
[21]MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J].Review of Scientific Instruments,1958,29: 688-691.
[22]宋朝鹏,魏硕,贺帆,等.利用低场核磁共振分析烘烤过程烟叶水分迁移干燥特性[J].中国烟草学报, 2017, 23(4):50-55.
[23]王海鸥, 谢焕雄, 陈守江,等.不同干燥方式对柠檬片干燥特性及品质的影响[J].农业工程学报, 2017, 33(14):292-299.
[24]李东,谭书明,陈昌勇,等. LF-NMR对稻谷干燥过程中水分状态变化的研究[J].中国粮油学报, 2016, 31(7):1-5.
[25]CAO X, ZHANG F, ZHAO D, et al. Effects of freezing conditions on quality changes in blueberries[J]. Journal of the Science of Food & Agriculture, 2018,98(12):4673-4679.
[26]WANG J, MUJUMDAR A S, Deng L Z, et al. High-humidity hot air impingement blanching alters texture, cell-wall poly-saccharides, water status and distribution of seedless grape[J].Carbohydrate Polymers, 2018, 194:9-17.

相似文献/References:

[1]周 莉,任 静,陆梦桃,等.贵阳市主要绿化树种蚧虫种类调查及发生成因分析[J].江苏林业科技,2017,44(04):43.[doi:10.3969/j.issn.1001-7380.2017.04.010]
[2]徐勤明,何志堃.无锡市香樟煤污病和日本壶链蚧的危害情况分析[J].江苏林业科技,2017,44(05):32.[doi:10.3969/j.issn.1001-7380.2017.05.007]
[3]周爱东,徐小明,王岚,等.镇江市香樟病虫害的发生和危害情况调查[J].江苏林业科技,2018,45(01):44.[doi:10.3969/j.issn.1001-7380.2018.01.011]
 ZHOU Ai-dong,XU Xiao-ming,WANG Lan,et al.Investigation of the occurrence and damage of diseases and pests on Cinnamomum camphora (L.) Presl in Zhenjiang City[J].Journal of Jiangsu Forestry Science &Technology,2018,45(06):44.[doi:10.3969/j.issn.1001-7380.2018.01.011]
[4]樊斌琦.2种微囊悬浮剂对香樟齿喙象的防治试验[J].江苏林业科技,2018,45(02):30.[doi:10.3969/j.issn.1001-7380.2018.02.008]

备注/Memo

备注/Memo:
收稿日期:2018-10-18;修回日期:2018-10-30
作者简介:宣艳(1978- ),女,安徽滁州人,实验师,博士。主要从事现代测试分析技术在农林作物研究中的应用工作。E-mail:xuanyannfu@njfu.edu.cn。
更新日期/Last Update: 2019-02-20