[1]陈于,沈子楠.Cu2+胁迫下空心莲子草与美人蕉的生长响应及铜富集特性研究[J].江苏林业科技,2025,52(03):17-23.[doi:10.3969/j.issn.1001-7380.2025.03.003]
 Chen Yu,Shen Zinan.Growth responses and copper absorption characteristics of Alternanthera philoxeroides and Canna indica under copper stress[J].Journal of Jiangsu Forestry Science &Technology,2025,52(03):17-23.[doi:10.3969/j.issn.1001-7380.2025.03.003]
点击复制

Cu2+胁迫下空心莲子草与美人蕉的生长响应及铜富集特性研究()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第52卷
期数:
2025年03期
页码:
17-23
栏目:
试验研究
出版日期:
2025-06-30

文章信息/Info

Title:
Growth responses and copper absorption characteristics of Alternanthera philoxeroides and Canna indica under copper stress
文章编号:
1001-7380(2025)03-0017-07
作者:
陈于12沈子楠3
1.江苏省中国科学院植物研究所(南京中山植物园),江苏 南京 210014;
2.江苏省植物资源保护与利用重点实验室,江苏 南京 210014;
3.南京外国语学校,江苏 南京 210008
Author(s):
Chen Yu12 Shen Zinan3
1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China;
2.Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Nanjing 210014, China;
3.Nanjing Foreign Language School, Nanjing 210008, China
关键词:
Cu2+空心莲子草美人蕉胁迫生理生化响应富集
Keywords:
Cu2+ Alternanthera philoxeroides Canna indica Stress Physiological and biochemical response Absorption
分类号:
Q945.78;S682.2+1
DOI:
10.3969/j.issn.1001-7380.2025.03.003
文献标志码:
A
摘要:
采用水培法,以空心莲子草和美人蕉为对象,设置Cu2+质量浓度梯度为0,6,12 mg/L,探究不同质量浓度Cu2+对2种植物生理生化指标的影响以及铜富集特性。结果显示,在21 d的处理周期内,和对照相比,空心莲子草主茎生长呈现先促进后抑制的现象;根生长则持续抑制。美人蕉株高生长为低质量浓度促进、高质量浓度抑制;根生长前7 d,低于对照组,根生长7 d后表现为低质量浓度促进、高质量浓度抑制。生理生化指标结果显示,在处理第21日,随着Cu2+质量浓度的增加,空心莲子草SOD含量先升后降,MDA显著上升(P<0.05),叶绿素缓慢下降;美人蕉SOD持续下降,MDA上升,叶绿素总含量缓慢下降但不显著(P>0.05)。2种植物根、茎、叶吸收Cu2+能力不同,根部为主要吸收部位。富集分析显示美人蕉对铜的富集能力强于空心莲子草,转移能力则较弱。该研究为这2种植物用于Cu2+污染水体修复提供科学依据。
Abstract:
Using hydroponic culture, investigated the effects of gradient concentrations of heavy metal Cu2+ (0, 6, 12 mg/L) were on the physiological and biochemical indicators of two plants, Alternanthera philoxeroides and Canna indica. The results showed that within the 21-day treatment period, compared with the control, the stem height growth of A. philoxeroides was first promoted and then inhibited, while the root growth was continuously inhibited. For C. indica, the plant height growth was promoted at low Cu2+concentrations and inhibited at high concentrations; in terms of root growth, it was lower than that of the control in the first 7 days, and after 7 days, showing promotion at low Cu2+ concentrations and inhibition at high Cu2+concentrations. On the 21th day of treatment, the SOD activity in A. philoxeroides initially increased and then decreased, MDA content significantly increased (P<0.05), and chlorophyll content gradually declined. In C. indica, SOD activity continuously decreased, MDA content increased, and total chlorophyll content declined slowly but not significantly (P>0.05). Both plants exhibited varying Cu2+ absorption capacities in different tissues (roots, stems, and leaves), with roots being the primary site of accumulation. Enrichment analysis showed that C. indica has a stronger ability to enrich copper than A. philoxeroides, but with a weaker ability to translocate it. These findings provide theoretical support for the application of Alternanthera philoxeroides and Canna indica in the remediation of Cu2+-contaminated water bodies.

参考文献/References:

[1]ZHAO G,YE S,YUAN H,et al.Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary,China [J].Environmental Science and Pollution Research, 2016,24(3):2966-2979.

[2]WANG Y,LI B,ZHU J,et al.Assessment of heavy metals in surface water,sediment and macrozoobenthos in inland rivers:A case study of the Heihe River, Northwest China[J]. Environmental Science and Pollution Research,2022, 29(23):35253-35268.
[3]ZHANG X,WANG H,ZHOU F,et al.Exploring the dynamics of Cu transported from the Yangtze River to the East China Sea[J].Marine Pollution Bulletin, 2020,156:111250.
[4]MUNUNGA KATEBE F,RAULIER P,COLINET G,et al.Assessment of heavy metal pollution of agricultural soil,irrigation water and vegetables in and nearby the cupriferous city of lubumbashi,democratic republic of the congo[J].Agronomy,2023,13(2):357.
[5]HAMA AZIA K H,MUSTAFA F S,OMER K M,et al.Heavy metal pollution in the aquatic environment:Efficient and low-cost removal approaches to eliminate their toxicity:A Review[J]. RSC Advances,2023,13(26):17595-17610.
[6]LI Q,LI X,BU C,et al.Distribution,risk assessment, and source apportionment of heavy metal pollution in cultivated soil of a typical mining area in southwest China[J].Environmental Toxicology and Chemistry,2023,42(4):888-900.
[7]BHARGAVI A M,BRINHA P,ILANCHEZHIAN T,et al.Effect of copper (heavy metal) on catla fish[J].International Journal of Pharmaceutical Sciences Review and Research,2022(72): 186-190.
[8]UNIYAL N,DHAMI B,PETWAL H,et al.Adverse impacts of heavy metal pollution on soil and plant growth in agriculture[J].Emergent Life Sciences Research,2024,10(2):103-115.
[9]MITRA A,ZAMAN S,BHATTACHARYYA S B.Heavy metal pollution in the lower gangetic mangrove ecosystem[J].Marine Ecology,2013(2):97-113.
[10]WILSON K,IQBAL J,OBAID A,et al.Camel dung-derived biochar for the removal of Copper(II) and Chromium(III) ions from aqueous solutions: Adsorption and Kinetics Studies[J]. ACS Omega,2024,9(10):11500-11509.
[11]PANG Y L,QUEK Y Y,LIM S,et al. Review on phytoremediation potential of floating aquatic plants for heavy metals:a promising approach[J].Sustainability,2023,15(2):1290.
[12]闫大江.空心莲子草对南四湖Cd、Pb污染底泥修复效果及机制研究[D].济南:山东建筑大学,2021.
[13]杨春辉.美人蕉与黑麦草作为水培和人工湿地栽培作物处理城市污水研究[D].西安:西安建筑科技大学,2012.
[14]方伟成,孙成访.水生植物对低浓度铜离子净化效果的比较[J].安徽化工,2016, 42(4): 86-87.
[15]黄燚.挺水植物生态浮床对高浓度地表水中Cu2+的去除与富集模拟研究[D].重庆:重庆大学,2016.
[16]石慧芳,席溢,张茂,等.铅、锌、镉单一及复合胁迫对多年生黑麦草生长及生理特性的影响[J].南方农业学报,2021,52(4):1030-1039.
[17]王三根.植物生理学实验教程[M].北京:科学出版社,2017.
[18]李金辉,丁薇,翁贵英,等.明湖国家湿地公园10种水生植物的重金属富集特征[J].水生态学杂志,2020,41(1):6-11.
[19]JADID N,MAZIYAH R,NURCAHYANI D D,et al.Growth and physiological responses of some Capsicum frutescens varieties to copper stress[C].AIP Conference Proceedings,2017,1854: 020018.
[20]JIN M-F,YOU M-X,LAN Q-Q,et al.Effect of copper on the photosynthesis and growth of Eichhornia crassipes[J].Plant Biology,2021,23(5):777-784.
[21]ZHOU H,ZHOU K-H,ZHAO G,et al.Physiological and biochemical properties of cotton seedlings in response to Cu2+ stress[J].Current Issues in Molecular Biology,2023,45(5): 4050-4062.
[22]商海燕,马行,刘刊,等.Cu2+对水生植物水鳖生理特性和光合作用的影响[J].水资源保护,2013,29(5):65-68.?/div>
[23]PALM E, GUIDI NISSIM W, GIORDANO C, et al. Root potassium and hydrogen flux rates as potential indicators of plant response to zinc, copper and nickel stress [J]. Environmental and Experimental Botany, 2017,143: 38-50.
[24]SIMANJUNTAK L, FIEL GANIS SIREGAR M, C MOSE J, et al. The effects of phaleria macrocarpa (scheff.) boerl extract on malondialdehyde (MDA) level in preeclampsia-induced human umbilical vein endothelial cell (HUVEC) culture[J].Acta Scientific Medical Sciences, 2019,3(8):57-61.
[25]CALYNIUK B,GROCHOWSKA E,WALKIEWICA K,et al.Malondialdehyde (MDA) – product of lipid peroxidation as marker of homeostasis disorders and aging[J]. Annales Academiae Medicae Silesiensis,2016,70:224-228.
[26]XUE P,LI G,LIU W,et al.Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle[J].Chemosphere,2010,81(9):1098-1103.
[27]AKHTAR M S,ASLAM S,DITTA A,et al.Interspecific variability in growth characteristics and phytoremediation of Cu by free-floating azolla macrophytes[J].Sustainability,2022,15(1): 497.

备注/Memo

备注/Memo:
收稿日期:2024-04-11;修回日期:2025-05-23
作者简介:陈于(1986- ),男,安徽阜阳人,博士,助理研究员。主要从事经济林、水生植物研究。E-mail:15150530195@163.com
更新日期/Last Update: 2025-08-07