[1]刘根林.转基因Bt棉对根际土壤微生物群落的影响[J].江苏林业科技,2015,42(04):28-34.[doi:10.3969/j.issn.1001-7380.2015.04.007]
 LIU Gen-lin.Effects of transgenic Bt cotton on rhizospheric soil microbial communities[J].Journal of Jiangsu Forestry Science &Technology,2015,42(04):28-34.[doi:10.3969/j.issn.1001-7380.2015.04.007]
点击复制

转基因Bt棉对根际土壤微生物群落的影响()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第42卷
期数:
2015年04期
页码:
28-34
栏目:
试验研究
出版日期:
2015-08-30

文章信息/Info

Title:
Effects of transgenic Bt cotton on rhizospheric soil microbial communities
文章编号:
1001-7380(2015)04-0028-07
作者:
刘根林
江苏省林业科学研究院,江苏 南京 211153
Author(s):
LIU Gen-lin
Jiangsu Academy of Forestry, Nanjing 211153, China
关键词:
转基因Bt Biolog微生物鉴定系统 土壤 微生物群落 主成分分析
Keywords:
Transgenic Bt cotton Biolog Soil Microbial community PCA
分类号:
S154.36
DOI:
10.3969/j.issn.1001-7380.2015.04.007
文献标志码:
A
摘要:
根际箱中种植2个转基因Bt棉品系99BC-4,99BC-8及其非Bt受体泗棉3(SM3)后,于花期采集其根际土壤。BIOLOG检测显示,整个168 h的实验室培养期间,根际土壤微生物群落的每孔颜色平均变化率(AWCD)随着时间的推移呈现出差异性的S型曲线; AWCD值显示,GP2板低于GN2板和ECO板,意味着供试土壤内革兰氏阳性菌对碳源的利用能力较低。功能多样性分析表明,99BC-8和SM3根际土壤微生物群落的丰富度高、多样性强,集中了较多的主导微生物种,因而表现出高代谢能力和功能多样性。PCA得出,GN2板前2个主成分分别占总变量的35.59%和19.37%,GP2板前2个主成分分别占30.57%和18.89%。推理认为,Bt毒蛋白可能刺激了某些微生物利用优势碳源以促其生长,主导着土壤微生物的反应,虽然在2个转基因Bt棉品系根际土壤中其表现不一致。
Abstract:
After cultivation of 2 transgenic Bt cotton lines(99BC-4, 99BC-8)and their non-Bt recipient Simian3(SM3)in rhizoboxes, the rhizospheric soils during blooming period were sampled. Biolog characterization revealed that during the whole laboratory incubation for 168 h, AWCDs of the rhizospheric soil microbial communities exhibited differential sigmoidals of C substrate utilization with incubation time, and the soils showed lower AWCDs in GP2 plate than in GN2 plate and EcoPlate, meaning that the G+ bacteria in the soils possessed a weaker C source metabolic ability. Functional diversity analysis indicated that the rhizospheric soils of 99BC-8 and SM3 had a larger richness and diversity of, and centered more dominant species in the microbial communities, reflecting a high metabolic potential and functional diversity. Principal Component Analysis(PCA)identified that the first 2 PCs accounted respectively for 35.59%, 19.37% in GN2 plate, and 30.57%, 18.89% in GP2 plate of total variation. It can be deduced that Bt endotoxin likely stimulated the growth of some specific microbes by using the preferential C sources, which likely dominated the soil microbial responses, though inconsistent in 2 transgenic Bt lines.

参考文献/References:

[1] Mendelson M, Kough J, Vaituzis Z, et al. Are Bt crops safe [J]? Nature Biotechnology, 2003,21(9):1003-1009.
[2] Wu K M, Lu Y H, Feng H Q, et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science, 2008,321(5896):1676-1678.
[3] Marvier M, McCreedy C, Regetz J, et al. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates [J]. Science, 2007, 316(5830): 1475-1477.
[4>] Icoz I, Saxena D, Andrew D A, et al. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis [J]. Journal of Environmental Quality, 2008, 37(2): 647-662.
[5] Lilley A K, Mark J B, Cartwright C, et al.Life in earth: the impact of GM plants on soil ecology [J]? Trends in Biotechnology, 2006, 24(1):9-14.
[6] Cartwright C D, Lilley A K. Mechanisms for investigating changes in soil ecology due to GMO releases[R]. Defra report EPG 1/5/214: Department for Environment, Food and Rural Affairs, 2004.
[7] Wolfenbarger L L, Phifer R P. The ecological risks and benefits of genetically engineered plants [J]. Science, 2000, 290(5499): 2088-2093.
[8] Liu G L. Different effects of transgenic Bt cotton on rhizospheric soil nutrition and soil enzyme activities [J]. Jiangsu Forestry Science &Technology, 2015, 42(1):16-22.
[9] Garland J L, Mills A L. Classication and characterization of heterotrophic bacterial communities on the basis of patterns of community-level sole-carbon-source utilization [J]. Applied Environmental Microbiology,1991, 57: 2351-2359.
[10] Zak J C, Willing M R, Moorhead D L, et al. Functional diversity of microbial communities: A quantitative approach [J]. Soil Biology & Biochemistry, 1994, 26(9):1101-1108.
[11] Hackett C A, Griffiths B S. Statistical analysis of the time-course of Biolog substrate utilization [J]. Journal of Microbiological Method, 1997, 30(1):63-69.
[12] Lupwayi N Z, Arsha M A, Rice W A, et al. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management [J]. Applied Soil Ecology, 2001, 16(3):251-161.
[13] Xue K, Luo H F, Qi H Y, et al. Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA [J]. Journal of Environmental Sciences -China, 2005, 17(1): 130-134.
[14] Saxena D, Flores S, Stotzky G. Transgenic plants: insecticidal toxin in root exudates from Bt corn [J]. Nature, 1999, 402(6761):480.
[15] Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae [J]. Nature, 1999, 399(6733): 214.
[16] Zwahlen C, Hilbeck A, Gugerli P, et al. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field [J]. Molecular Ecology, 2003a, 12(3): 765-775.
[17] Wandeler H, Bahylova J, Nentwig W. Consumption of two Bt and six non-Bt corn varieties by the woodlouse Porcellio scaber [J]. Basic Applied Ecology, 2002, 3(4):357-365.
[18] Fuller M E, Scow K M, Lau S, et al. Trichloroethylene(TCE)and toluene effects on the structure and function of the soil community [J]. Soil Biology & Biochemistry, 1997, 29(1):75-89.
[19] Derry A M, Staddon W J, Kevan P G, et al. Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization [J]. Biodiversity and Conservation, 1999, 8(2):205-221.
[20] Degens B P, Schipper L A, Sparling G P, et al. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities [J]. Soil Biology & Biochemistry, 2000, 32(2):189-196.
[21] Huang Z Q, Xu Z H, Chen C R. Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia [J]. Applied Soil Ecology, 40(2), 2008:229-239.
[22] Lin R Y, Rong H, Zhou J J, et al. Impact of allelopathic rice seedlings on rhizospheric microbial populations and their functional diversity [J]. Acta Ecologica Sinica, 2007, 27(9): 3644-3654.
[23] Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microbial Ecology, 1998, 35(2):103-115.
[24] Garland J L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization [J]. Soil Biology & Biochemistry, 1996, 28(2): 213-221.
[25] Garland J L. Analysis and interpretation of community-level physiological proles in microbial ecology [J]. FEMS Microbiological Ecology, 1997, 24(4):289-300.
[26] Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands [J]. Environmental Pollution, 1998, 103(2/3):239-250.
[27] Johnson D, Campbell C D, Lee J A, et al. Arctic microorganisms respond more to elevated UV-B radiation than CO2 [J]. Nature, 2002, 416(6876):82-83.
[28] Donegan K K, Palm C J, Fieland V J, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin[J]. Applied Soil Ecology, 1995, 2(2):111-124.

备注/Memo

备注/Memo:
收稿日期:2015-04-12; 修回日期:2015-06-21
作者简介:刘根林(1963-),男,江苏姜堰人,高级工程师,博士,主要从事农林土壤微生物群落的分子生物学研究。
更新日期/Last Update: 2015-09-28