[1]支梦玲,金庆东,华雨,等.俄罗斯桃叶卫矛组织培养苗对盐胁迫的生理响应[J].江苏林业科技,2019,46(02):1-6.[doi:10.3969/j.issn.1001-7380.2019.02.001]
 Zhi Mengling,Jin Qingdong,Hua Yu,et al.Physiological response of Euonymus bungeanus tissue culture seedlings to salt stress[J].Journal of Jiangsu Forestry Science &Technology,2019,46(02):1-6.[doi:10.3969/j.issn.1001-7380.2019.02.001]
点击复制

俄罗斯桃叶卫矛组织培养苗对盐胁迫的生理响应()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第46卷
期数:
2019年02期
页码:
1-6
栏目:
试验研究
出版日期:
2019-04-30

文章信息/Info

Title:
Physiological response of Euonymus bungeanus tissue culture seedlings to salt stress
文章编号:
1001-7380(2019)02-0001-06
作者:
支梦玲金庆东华雨马艳*
金陵科技学院园艺园林学院,江苏南京210000
Author(s):
Zhi Mengling Jin QingdongHua YuMa Yan*
College of Horticulture, Jinling Institute of Technology,Nanjing 210000,China
关键词:
俄罗斯桃叶卫矛耐盐性NaCl胁迫生理指标组织培养苗
Keywords:
Euonymus bungeanus Salt toleranceNaClStressPhysiological indexTissue culture seedling
分类号:
Q945.78;S792.99
DOI:
10.3969/j.issn.1001-7380.2019.02.001
文献标志码:
A
摘要:
采用盆栽方法,以俄罗斯桃叶卫矛组织培养苗为材料,用不同浓度(0,40,80,120 mmol/L)的NaCl溶液进行处理,对盐胁迫下俄罗斯桃叶卫矛的形态表现和叶绿素含量、膜透性、丙二醛(MDA)、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性等生理指标进行研究。结果表明:在盐胁迫下植物的株高生长量逐渐受到抑制;叶绿素含量随盐浓度的增加呈现下降趋势;膜透性、MDA、SOD、POD活性均随盐浓度增加而增加;40—80 mmol/L的NaCl低浓度溶液胁迫后促进了俄罗斯桃叶卫矛根冠比的增加,而高浓度(120 mmol/L)NaCl溶液抑制了根冠比的增加。进一步酶活指标分析表明,在盐胁迫下,植株的叶片质膜结构受到一定的伤害,但MDA含量差异不明显,而SOD和POD活性随着盐浓度升高显著上升。研究认为,俄罗斯桃叶卫矛通过提高植株的抗氧化能力来抵抗盐胁迫造成的伤害,对盐胁迫具有较强的适应能力。
Abstract:
In this study, the physiological response of Euonymus bungeanus tissue culture seedlings under different concentrations of NaCl stress was studied by potted culture.The results showed that the growth of plant height was inhibited under salt stress, and the chlorophyll content of leaves decreased with the increase of salt concentration; membrane permeability, malondialdehyde (MDA), SOD, and POD activities were all increased with the increase of salt concentration. The low concentration of 40—80 mmol/L NaCl promoted the increase of the root-shoot ratio while high concentration of 120 mmol/L NaCl inhibited it. Furthermore, the enzyme activity index analysis showed that the leaves suffered from a certain degree of damage under salt treatment without significant changes of MDA content while SOD and POD enzyme activities increased significantly, suggesting that E. bungeanus could get tolerance to salt stress by improving the antioxidant systems.

参考文献/References:

[1]ZHANG H X, LIU Z X, LIU Q F. Seedling growth and salt tolerance of tree species under NaCl stress[J]. Acta Ecologica Sinica, 2009,29(5):2263-2271.
[2]郭慧娟,胡涛,傅金民. 苏打碱胁迫对多年生黑麦草的生理影响[J].草业学报, 2012, 21(1): 118-125.
[3]王欣欣,王炳峰,赵国红.桃叶卫矛扦插快速生根[J].中国花卉园艺,2016(6):47.
[4]尹丽,胡庭兴,刘永安,等.干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响[J]. 应用生态学报,2010,21(3):569-576.
[5]王学奎,黄见良.植物生理生化实验原理与技术:3版[M]. 北京:高等教育出版社,2015.
[6]郑丽锦,张学英,葛会波,等.果树盐胁迫生理生化特性的研究进展[J].河北农业大学学报,2003,26(S1):41-44.
[7]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002, 53: 247-273.
[8]TAKEMURA T, HANAGATA N, SUGIHARA K, et al. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza[J]. Aquatic Botany,2000,68(1):15-28.
[9]ZHU J K. Plant salt tolerance[J].Trends in Plant Science, 2001, 6(2):66-71.
[10]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008. 59(1):651-681.
[11]张翯,顾万荣,王泳超,等.DCPTA对盐胁迫下玉米苗期根系生长、渗透调节及膜透性的影响[J].生态学杂志,2015,34(9):2474-2481.
[12]李冬梅,周淑莉,李永光,等.转GmGT-2B基因大豆的耐盐性分析[J].大豆科学,2017,36(2):213-218.
[13]FRIDOVICH I. Superoxide anion radical (O·-2 ), superoxide dismutases, and related matters [J]. Journal of Biological Chemistry, 1997, 272(30):18515-18517.
[14]FERREIRA-SILVA S L, VOLGTT E L, SILVA E N, et al. Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity[J]. Biologia Plantarum, 2012, 56(1):172-176.
[15]BANO S, ASHRAF M, AKRAM N A. Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.)[J]. Journal of Plant Interactions, 2014, 9(1):324-329.
[16]GILL S S, ANJUM N A, GILL R, et al. Superoxide dismutase——mentor of abiotic stress tolerance in crop plants[J]. Environmental Science & Pollution Research, 2015, 22(14): 10375-10394.
[17]GUO Y Y, YU H Y, YANG M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2):244-250.
[18]张怀山,赵桂琴,栗孟飞,等.中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答[J].草业学报,2014,23(2):180-188.
[19]孟亚雄,王世红,汪军成,等.CoCl2对NaCl胁迫下大麦生长及幼苗生理指标的影响[J].草业学报,2014,23(3):160-166.
[20]刘凤歧,刘杰淋,朱瑞芬,等.4种燕麦对NaCl胁迫的生理响应及耐盐性评价[J].草业学报,2015,24(1):183-189.

备注/Memo

备注/Memo:
收稿日期:2019-03-08;修回日期:2019-04-16
基金项目:江苏省自然基金项目(BK200151097);金陵科技学院高层次人才引进资助项目(jit-rcyj-201507);江苏省高校大学生创业创新训练计划项目“盐胁迫对桃叶卫矛组培苗生长和生理特性的研究”(201713573058X)
作者简介:支梦玲(1997- ),女,江苏淮安人,本科生。
*通信作者:马艳(1964- ),女,陕西绥德人,教授,博士。研究方向:园林植物抗逆生理和分子生物学。E-mail: mayan@jit.edu.cn。
更新日期/Last Update: 2019-06-11