[1]钟华瀚,饶永智,徐丹丹*.基于Landsat 8 OLI和Sentinel-2A的南京市各城区绿化差异分析[J].江苏林业科技,2018,45(05):21-27.[doi:10.3969/j.issn.1001-7380.2018.05.005]
 Zhong Huahan,Rao Yongzhi,Xu Dandan*.Difference analysis of the greenlands of the urban districts in Nanjing City based on Landsat OLI imagery[J].Journal of Jiangsu Forestry Science &Technology,2018,45(05):21-27.[doi:10.3969/j.issn.1001-7380.2018.05.005]
点击复制

基于Landsat 8 OLI和Sentinel-2A的南京市各城区绿化差异分析()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第45卷
期数:
2018年05期
页码:
21-27
栏目:
试验研究
出版日期:
2018-10-15

文章信息/Info

Title:
Difference analysis of the greenlands of the urban districts in Nanjing City based on Landsat OLI imagery
文章编号:
1001-7380(2018)05-0021-07
作者:
钟华瀚饶永智徐丹丹*
南京林业大学生物与环境学院生态系,江苏 南京 210037
Author(s):
Zhong HuahanRao YongzhiXu Dandan*
Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
城市绿化面积Landsat 8Sentinel-2A监督分类绿化率南京市
Keywords:
Urban green areaLandsat 8Sentinel-2ASupervised classificationGreen ratioNangjing
分类号:
S732/737
DOI:
10.3969/j.issn.1001-7380.2018.05.005
文献标志码:
A
摘要:
遥感作为多时空技术在全面调查城市绿化现状方面具有优势,遥感在城市绿地调查中的应用也随着遥感技术的发展和遥感影像质量及精度的提高越来越广泛。该研究基于Sentinel-2A和Landsat 8影像将南京市区域地块分类为绿地、建筑地、农业用地(包括耕种期的农田和非耕种期的裸地)和水体,并针对南京市不同的分区计算人均绿地和绿化率,及其与城市发展之间的关系。结果显示,南京各区绿地率分别为:江宁区22%,溧水区27%,浦口区35%,六合区28%,栖霞区24%,雨花台区33%,建邺区20%,玄武区42%,鼓楼区17%,秦淮区18%,高淳区20%;各区人均绿化面积为:江宁区377 m2/人,溧水区716 m2/人,浦口区606 m2/人,六合区697 m2/人,栖霞区222 m2/人,雨花台区173 m2/人,建邺区67 m2/人,玄武区63 m2/人,鼓楼区9 m2/人,秦淮区13 m2/人,高淳区362 m2/人。数据反映了绿地率与人均绿化面积可能与不同行政区的规划以及城市化程度有联系。
Abstract:
Along with fast pace of urban sprawl in Nanjing City, Jiangsu Province, urban green ratio (green area ratio to impervious area in a city) and the average green area per person change gradually. Remote sensing, with various spatial and temporal information, has been widely applied in investigating urban greenland. In this study, both Sentinel-2 and Landsat 8 images were used to classify Nanjing City into four classes, i.e., green land, impervious area, agricultural fields (including farmland and bareland) and water body, and then green ratio and average green area per person were compared among 11 districts of Nanjing City. The results showed that green ratio of 11 districts in Nanjing was as follows, 22% in Jiangning District, 27% in Lishui District, 35% in Pukou District,28% in Luhe District, 24% in Qixia District, 33% in Yuhuatai District, 20% in Jianye District, 42% in Xuanwu District, 18% in Qinhuai District, 20% in Gaochun District, 17% in Gulou District; and average green area per person of 11 districts in Nanjing was as follows, 337 m2/person in Jiangning District, 716 m2/person in Lishui District, 606 m2/person in Pukou District,697 m2/person in Luhe District, 222 m2/person in Qixia District, 173 m2/person in Yuhuatai District, 67 m2/person in Jianye District, 63 m2/person in Xuanwu District, 13 m2/person in Qinhuai District, 362 m2/person in Gaochun District, 9 m2/person in Gulou District. The data reflects that the green ratio and average green area per person may be related to the planning of different administrative regions and the degree of urbanization.

参考文献/References:

[1]孔繁花, 尹海伟, 刘金勇,等. 城市绿地降温效应研究进展与展望[J]. 自然资源学报, 2013, 28(1):171-181.
[2]王超跃. 我国土地管理制度的现状、问题及对策研究[J]. 山西农经,2016,7(5):65-45.
[3]李雪峰. 改革土地管理制度促进城镇化发展[J]. 黑龙江科技信息,2016(2):252.
[4]夏李添姣. 园林艺术的设计手法在屋顶绿化中的应用[D]. 石家庄:河北师范大学, 2016.
[5]肖荣波, 周志翔, 王鹏程,等. 3S技术在城市绿地生态研究中的应用[C]∥中国生态学会全国会员代表大会. 2004:71-76.
[6]王 焘. 城市园林绿化事业发展政策的再思考[J]. 中国园林, 1992(3):26-32.
[7]袁东升. 应用遥感技术进行城市绿化现状调查的研究[J]. 中国园林, 2001, 17(5):74-76.
[8]刘梦飞. 应用航空遥感技术分析城市绿化状况的方法与程序[J]. 中国园林,1986(1):8.
[9]黄广耀,邓良炳. 城市绿化调查中的遥感与制图研究——以广州市绿化调查为例[J]. 中山大学学报论丛,1990(4):91-98.
[10]黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74.
[11]宣 勇,谢炳庚,姜端午. 高分辨率遥感数据在城市绿化调查中的应用[J]. 国土资源科技管理,2004(1):74-77.
[12]陈春林,刘继生,韩 阳,等. 基于 TM 影像的哈尔滨老城区城市绿地信息提取研究[J]. 产业与科技论坛,2010,9(5):85-88.
[13]周坚华,黄顺忠. 三维量遥感调查:一种估算城市绿化环境效益的新方法[J]. 上海建设科技,1995(4):41-42.
[14]饶 君,李云鹏,陈立涛. 浅谈无人机低空摄影技术在城市绿化遥感测定中的应用[J]. 江西测绘,2012(2):16-17,23.
[15]CAYNES R J C, MITCHELL M G E, WU D S, et al. Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space[J]. Urban Ecosystems, 2016,19(4): 1-17.
[16]LIU Y Q, MENG Q Y, ZHANG J H, et al. An effective Building Neighborhood Green Index model for measuring urban green space[J]. International Journal of Digital Earth, 2016,9(4):387-409.
[17]USGS. Landsat Missions. https:∥earthexplorer.usgs.gov/.
[18]南京市统计局.南京统计年鉴2017[Z].2018.
[19]中华人民共和国建设部.城市绿地分类标准[Z].2002.
[20]中华人民共和国住房和城乡建设部.城市用地分类与规划建设用地标准[Z].2010-12-24.
[21]钱永兰.遥感图像光谱差异增强与农作物识别[R].2005-12.
[22]董 婷.基于分层分类法提取城市裸地信息[J].测绘地理信息,2016,41(4):56-61.

备注/Memo

备注/Memo:
收稿日期:2018-03-16;修回日期:2018-08-22
基金项目:江苏高校优势学科建设工程资助项目
作者简介:钟华瀚(1997- ),男,广东广州人,大学本科生。主要从事生态遥感技术研究以及鳞翅目昆虫生态学研究。
*通信作者:徐丹丹(1987- ),女,江苏南通人,副教授,博士。E-mail: dandan.xu@njfu.edu.cn。
更新日期/Last Update: 2018-11-22