参考文献/References:
[1]李坚.木材科学[M].北京:高等教育出版社,2002.
[2]HANLEY S J, GRAY D G. Atomic force microscope images of black spruce wood sections and pulp fibers [J]. Holzforschung, 1994, 48 (1): 29-34.
[3]CLAIR B, THIBAUT B. Shrinkage of the gelatinous layer of poplar and beech tension wood [J]. IAWA Journal, 2001, 22 (2):121-131.
[4]FAHL N, SALM .On the lamellar structure of the tracheid cell wall [J]. Plant Biology, 2002, 4 (2):339-345.
[5]NEINHUIS C, BARTHLOTT W. Characterization and distribution of water repellent, self-cleaning plant surfaces [J]. Annals of Botany, 1997, 79 (6):667-677.
[6]BENTE M, AVRAMIDIS G. Wood surface modification in dielectric barrier discharges at atmospheric pressure for creating water repellent characteristics [J]. Holz Roh Werkst, 2004, 62 (3):157-163.
[7]BAKER A A, HELBERT W,SUGIYAMA J, et al. Surface structure of native cellulose microcrystals by AFM[J]. Applied Physics A, 1998, 66: s559-s563.
[8]YAMAMOTO H, HORII F, ODANI H. Structural-changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures [J]. Macromolecules, 1989, 22 (10): 4130-4132.
[9]DEBZI E M, CHANZY H, SUGIYAMA J, et al. The Iα→Iβ transformation of highly crystalline cellulose by annealing in various mediums [J]. Macromolecules, 1991, 24 (26): 6816-6822.
[10]MALKAVAARA J P, AL N R, PELTONEN J. Scanning probe microscopy of pine and birch kraft pulp fibres [J]. Polymer, 2000, 41 (6): 2121- 2126.
[11]KOLJONEN K, STERBERG M, JOHANSSON L S,et al. Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 228 (1):143-158.
[12]GUSTAFSSON J, LEHTO J H, TIENVIERI T. Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225 (1): 95-104.
[13]SNELL R, GROOM L H, RIALS T G. Characterizing the surface roughness of thermo mechanical pulp fibers with atomic force Microscopy [J]. Holzforschung, 2001, 55 (5): 511-520.
[14]王建清,徐梅,金政伟,等.纳米SiO2/纤维素包装薄膜结构形态及性能研究[J].包装工程,2009,30(9):1-4.
[15]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社, 2004 : 32-37.
[16]WIMME R, LUCAS B N, TSUI T Y, et al. Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoidertation technique [J]. Wood Science and Technology, 1997, 1 (2): 131-141.
[17]WIMMER R, LUCAS B N. Comparing mechanical properties of secondary wall and cell corner midder lamella in spruce wood [J]. IAWA Journal, 1997, 18 (1): 77-88.
[18]GINDL W, GUPTA H S.Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nanoindentation [J]. Composites: Part A, 2002, 33 (8): 1141-1145.
[19]GINDL W, GUPTA H S, SCHOBERL T,et al. Mechanical properties of spruce wood cell walls by nanoindentation [J]. Applied Physics A, 2004, 79 (8): 2069-2073.
[20]GINDL W, SCHOBERL T. The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements [J]. Composites: Part A, 2004, 35 (11): 1345-1349.
[21]WANG S, LEE S H, TZE W T Y, et al. Nanoindentation as a tool for understanding nao-mechnical properties of cell wall and biocomposites[C]∥2006 International Conference on Nanotechnology. Atlanta Marriott Marquis Hotel, Atlanta, Georgia, 2006.
[22]WANG S, LEE S H, TZE W T Y, et al. Investigating nano-mechnical properties of the wood and ite composites by continuous nanoindentation [C]∥The 8th pacific rim bio-based composites symposium. Kuala Lumpur, Malaysia, 2006.
[23]TEZ W T Y, WANG S, RIALS T G, et al.Nanoindentation of wood cell wall: continuous stiffness and hardness measurements [J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (3):945-953.
[24]KONNERTH J, GIERLINGER N, KECKES J, et al. Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle [J]. Journal of Materials Science, 2009, 44 (16): 4399-4406.
[25]LEE S H, WANG S Q, ENDO T, et al. Visualization of interfacial zones in lyocell fiber-reinforced polypropylene composite by AFM contrast imaging based on phase and thermal conductivity measurements [J]. Holzforschung, 2009, 63(2): 240-247.
[26]LEE S H, WANG S Q, PHARR G M, et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis [J]. Composites Part A:Applied Science and Manufacturing, 2007, 38 (6): 1517-1524.
[27]HURLEY D C. Contact resonance force microscopy techniques for nanomechanical measurements[M]. In Applied Scanning Probe Methods XI: Scanning Probe Microscopy Techniques,Berlin Heidelberg: Springer, 2009: 97-138.
[28]NAIR S S, WANG S, HURLEY D C.Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41 (5): 624-631.