[1]高步红,徐莉*,孙海军,等.原子力显微镜在木材科学研究中的进展[J].江苏林业科技,2018,45(01):54-57.[doi:10.3969/j.issn.1001-7380.2018.01.013]
点击复制

原子力显微镜在木材科学研究中的进展()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第45卷
期数:
2018年01期
页码:
54-57
栏目:
综述与专论
出版日期:
2018-02-28

文章信息/Info

文章编号:
1001-7380(2018)01-0054-04
作者:
高步红1徐莉12*孙海军1宣艳1唐颖1
1. 南京林业大学 现代分析测试中心,江苏 南京 210037;
2. 南京林业大学 江苏省南方现代林业协同创新中心,江苏 南京 210037
关键词:
原子力显微镜微观尺度结构纤维素形貌纤维素粗糙度细胞壁力学性能
分类号:
S712; TH744
DOI:
10.3969/j.issn.1001-7380.2018.01.013
文献标志码:
A
摘要:
原子力显微镜应用技术是通过检测探针-样品之间相互作用力对样品表面的三维形貌和力学性能进行表征的新型显微技术。该文综述了原子力显微镜在木材微观尺度结构研究、纤维素形貌和粗糙度分析以及基于原子力显微镜的纳米压痕技术在木材细胞壁力学性能测定等木材科学相关方面的研究进展。为了进一步拓宽原子力显微镜在木材科学领域中的应用,还可以在基于原子力显微镜的峰值力纳米力学模量成像、多技术联用以及微观力学模型等方面继续开展深入研究。

参考文献/References:

[1]李坚.木材科学[M].北京:高等教育出版社,2002.
[2]HANLEY S J, GRAY D G. Atomic force microscope images of black spruce wood sections and pulp fibers [J]. Holzforschung, 1994, 48 (1): 29-34.
[3]CLAIR B, THIBAUT B. Shrinkage of the gelatinous layer of poplar and beech tension wood [J]. IAWA Journal, 2001, 22 (2):121-131.
[4]FAHL N, SALM .On the lamellar structure of the tracheid cell wall [J]. Plant Biology, 2002, 4 (2):339-345.
[5]NEINHUIS C, BARTHLOTT W. Characterization and distribution of water repellent, self-cleaning plant surfaces [J]. Annals of Botany, 1997, 79 (6):667-677.
[6]BENTE M, AVRAMIDIS G. Wood surface modification in dielectric barrier discharges at atmospheric pressure for creating water repellent characteristics [J]. Holz Roh Werkst, 2004, 62 (3):157-163.
[7]BAKER A A, HELBERT W,SUGIYAMA J, et al. Surface structure of native cellulose microcrystals by AFM[J]. Applied Physics A, 1998, 66: s559-s563.
[8]YAMAMOTO H, HORII F, ODANI H. Structural-changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures [J]. Macromolecules, 1989, 22 (10): 4130-4132.
[9]DEBZI E M, CHANZY H, SUGIYAMA J, et al. The Iα→Iβ transformation of highly crystalline cellulose by annealing in various mediums [J]. Macromolecules, 1991, 24 (26): 6816-6822.
[10]MALKAVAARA J P, AL N R, PELTONEN J. Scanning probe microscopy of pine and birch kraft pulp fibres [J]. Polymer, 2000, 41 (6): 2121- 2126.
[11]KOLJONEN K, STERBERG M, JOHANSSON L S,et al. Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 228 (1):143-158.
[12]GUSTAFSSON J, LEHTO J H, TIENVIERI T. Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225 (1): 95-104.
[13]SNELL R, GROOM L H, RIALS T G. Characterizing the surface roughness of thermo mechanical pulp fibers with atomic force Microscopy [J]. Holzforschung, 2001, 55 (5): 511-520.
[14]王建清,徐梅,金政伟,等.纳米SiO2/纤维素包装薄膜结构形态及性能研究[J].包装工程,2009,30(9):1-4.
[15]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社, 2004 : 32-37.
[16]WIMME R, LUCAS B N, TSUI T Y, et al. Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoidertation technique [J]. Wood Science and Technology, 1997, 1 (2): 131-141.
[17]WIMMER R, LUCAS B N. Comparing mechanical properties of secondary wall and cell corner midder lamella in spruce wood [J]. IAWA Journal, 1997, 18 (1): 77-88.
[18]GINDL W, GUPTA H S.Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nanoindentation [J]. Composites: Part A, 2002, 33 (8): 1141-1145.
[19]GINDL W, GUPTA H S, SCHOBERL T,et al. Mechanical properties of spruce wood cell walls by nanoindentation [J]. Applied Physics A, 2004, 79 (8): 2069-2073.
[20]GINDL W, SCHOBERL T. The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements [J]. Composites: Part A, 2004, 35 (11): 1345-1349.
[21]WANG S, LEE S H, TZE W T Y, et al. Nanoindentation as a tool for understanding nao-mechnical properties of cell wall and biocomposites[C]∥2006 International Conference on Nanotechnology. Atlanta Marriott Marquis Hotel, Atlanta, Georgia, 2006.
[22]WANG S, LEE S H, TZE W T Y, et al. Investigating nano-mechnical properties of the wood and ite composites by continuous nanoindentation [C]∥The 8th pacific rim bio-based composites symposium. Kuala Lumpur, Malaysia, 2006.
[23]TEZ W T Y, WANG S, RIALS T G, et al.Nanoindentation of wood cell wall: continuous stiffness and hardness measurements [J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (3):945-953.
[24]KONNERTH J, GIERLINGER N, KECKES J, et al. Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle [J]. Journal of Materials Science, 2009, 44 (16): 4399-4406.
[25]LEE S H, WANG S Q, ENDO T, et al. Visualization of interfacial zones in lyocell fiber-reinforced polypropylene composite by AFM contrast imaging based on phase and thermal conductivity measurements [J]. Holzforschung, 2009, 63(2): 240-247.
[26]LEE S H, WANG S Q, PHARR G M, et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis [J]. Composites Part A:Applied Science and Manufacturing, 2007, 38 (6): 1517-1524.
[27]HURLEY D C. Contact resonance force microscopy techniques for nanomechanical measurements[M]. In Applied Scanning Probe Methods XI: Scanning Probe Microscopy Techniques,Berlin Heidelberg: Springer, 2009: 97-138.
[28]NAIR S S, WANG S, HURLEY D C.Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41 (5): 624-631.

备注/Memo

备注/Memo:
收稿日期:2017-07-19;修回日期:2017-09-27
基金项目:江苏高校优势学科建设工程资助项目(PAPD)
作者简介:高步红(1986- ),女,江苏盐城人,实验师,博士。主要从事显微仪器的应用与技术研发工作。E-mail:gaobuhong@126.com。
*通信作者:徐 莉(1966- ),女,辽宁沈阳人,教授。主要从事材料物理与化学研究工作。E-mail:xuliqby@163.com。
更新日期/Last Update: 2018-04-02