[1]仇曙光,王永平.3种模拟基质对香蒲和芦苇生理生态的影响[J].江苏林业科技,2016,43(01):5-9.[doi:10.3969/j.issn.1001-7380.2016.01.002]
 QIU Shu-guang,WANG Yong-ping.The physiological responses of Typha angustifolia and Phragmites communis to 3 different substrates[J].Journal of Jiangsu Forestry Science &Technology,2016,43(01):5-9.[doi:10.3969/j.issn.1001-7380.2016.01.002]
点击复制

3种模拟基质对香蒲和芦苇生理生态的影响()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第43卷
期数:
2016年01期
页码:
5-9
栏目:
试验研究
出版日期:
2016-02-28

文章信息/Info

Title:
The physiological responses of Typha angustifolia and Phragmites communis to 3 different substrates
文章编号:
1001-7380(2016)01-0005-05
作者:
仇曙光1王永平2
1. 江苏省林业科学研究院,江苏南京211153;
2. 南京水利科学研究院水文水资源与水利工程科学国家重点实验室,江苏南京 210024
Author(s):
QIU Shu-guang1 WANG Yong-ping2
1.Jiangsu Academy of Forestry, Nanjing 211153,China;
2.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024,China
关键词:
芦苇香蒲基质淤泥粘土
Keywords:
Phragmites communis Typha angustifolia Substrate Sludge Clay
分类号:
S564+?2
DOI:
10.3969/j.issn.1001-7380.2016.01.002
文献标志码:
A
摘要:
为研究不同性质的基质对香蒲和芦苇2种优势挺水植物生长的影响,模拟了3种基质(100%粘土、50%淤泥+50%粘土和100%淤泥),研究了香蒲和芦苇的生理生态响应情况。结果显示:香蒲叶片的电子传递速率、最大量子产率和光合能力均随基质中淤泥含量的增加而上升,最大电子传递速率(Pm)和对强光的耐受能力(Pm/α)得到强化,株高也随之增加;在50%淤泥+50%粘土混合基质中生长的芦苇,获得最大株高(138.6 cm)和最大叶长(24.5 cm),而在100%淤泥中株高最低;淤泥比例高的基质中生长的植物对强光的耐受能力(Pm/α)略高于粘土比例高的基质中生长的植物。结论:香蒲更适合生长在肥沃的生态环境中,而芦苇则适合生长在营养水平适中的环境中,即50%淤泥+50%粘土的混合基质可能最适合芦苇生长。
Abstract:
To study the effects of different substrates on the growth of Typha angustifolia and Phragmites communis , after such 3 planting substrates as 100% clay, 50% sludge + 50% clay, and 100% sludge being mimicked, the physiological responses of T. angustifolia and P. communis were investigated. We got the following results as under 100% sludge condition, T. angustifolia had the largest of photosynthesis; and fitting parameters of the light response curve revealed the maximum electron transfer rate ( Pm ); the tolerance to strong light ( Pm/α ) and the plant height were enhanced with the increased proportion of sludge. In addition, the substrate composed of 50% sludge + 50% clay might be the most suitable for the growth of P. communis , with the maximum plant height of 138.6 cm and the maximum leaf length of 24.5 cm while the plant height was the lowest in the 100% sludge substrate. As for these two plant species, the tolerance to strong light ( Pm/α ) was increased in the high proportion of sludge. Therefore we concluded that the response of P. communis and T. angustifolia to organic matter was different from each other, i. e. T. angustifolia tended to grow well in more fertile sediment while P. communis tended to grow better in moderate fertile sediment.

参考文献/References:

[1]HOUGH R A,FORNWALL M D,NEGELE B J,et al.Plant community dynamics in a chain of lakes:principal factors in the decline of rooted macrophytes with eutrophication[J].Hydrobiologia,1989,173(3):199-217.
[2]BARKO J W,SMART R M.Sediment-based nutrition of submersed macro-phytes[J].Aquatic Botany,1981,10(4):339-352.
[3]BARKO J W,GUNNISON D,CARPENTER S R. Sediment interactions with submersed macrophyte growth and community dynamics[J].Aquatic Botany,1991,41(1/3):41-65.
[4]CARPENTER S R.Submersed vegetation:An internal factor in lake ecosystem succession[J].American Naturalist,1981,118(3):372-383.
[5]BARKO J W,SMART R M.Sediment-related mechanisms of growth limitation in submersed macrophytes[J].Ecology,1986,67(5):1328-1340.
[6]CARR G M,CHAMBERS P A.Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river[J].Freshwater Biology,1998,39(3):525-536.
[7]SHORT F T.The seagrass, Zostera Marina L.:Plant morphology and bed structure in relation to sediment ammonium in izembek lagoon[J].Alaska Aquatic Botany,1983,16(2):149-161.
[8]ROBACH F,HAJNSEK I,EGLIN I,et al.Phosphorus sources for aquatic macrophytes in running waters:water or sediment[J]?Acta Botanica Gallica,1995,142(6):719-731.
[9]DEMARS B O L,HARPER D M.Distribution of aquatic vascular plants in lowland rivers:separating the effects of local environmental conditions,longitudinal connectivity and river basin isolation[J].Freshwater Biology,2005,50(3):418-437.
[10]BARKO J W.The growth of Myriophyllum spicatum L. in relation to selected characteristics of sediment and solution[J].Aquatic Botany,1983,15(1): 91-103.
[11]GENTY B,BRIANTAIS J M,BAKER N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochimica et Biophysica Acta,1989,990(1):87-92.
[12]PLATT T,GALLEGOS C L,HARRISON W G.Photoinhibition of photosynthesis in natural assemblages of marine-phytoplankton[J].Journal Of Marine Research,1980,38(4):687-701.
[13]黄祥飞.湖泊生态调查观测与分析[M].北京:北京标准出版社,2000.
[14]HAKANSON L,JANSSON M.Principles of Lake Sedimentology[M].New York:Springer Verlag,1983.
[15]RALPH P J,GADEMANN R.Rapid light curves:A powerful tool to assess photosynthetic activity[J].Aquatic Botany,2005,82(3):222-237.
[16]BJORK MAN O,DEMMING-ADAMS B.Regulation of photosynthetic light energy capture,conversion,and dissipation in leaves of higher plants[M]∥ Schulze E D,Caldwell M M.Ecophysiology of Photosynthesis.Berlin:Springer,1994:17-47.
[17]WALDHOFF D,FURCH B,JUNK W J.Fluorescence parameters,chlorophyll concentration,and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia:Symmeria paniculata[J].Environmental and Experimental Botany,2002,48(3):225-235.
[18]DAVIS S M.Phosphorus inputs and vegetation sensitivity in the Everglades[M]∥ Davis S M,Ogden J C. Everglades:the ecosystem and its restoration.Florida: St.Lucie Press,1994:357-378.
[19]GOPHEN M.Nutrient and plant dynamics in Lake Agmon Wetlands (Hula Valley, Israel):a review with emphasis on Typha domingensis (1994-1999) [J].Hydrobiologia,2000,441(1):25-36.
[20]WEISNER S E B.Effects of an organic sediment on performance of young Phragmites australis clones at different water depth treatments[J].Hydrobiologia,1996,330(3):189-194.
[21]KUHL H, KOHL J-G.Seasonal nitrogen dynamics in reed beds ( Phragmites australis (Cav.) Trin. ex. Steudel) in relation to productivity[J].Hydrobiologia,1993,251(1):1-12.
[22]AR MSTRONG J,ARMSTRONG W. Phragmites die-back:toxic effects of propionic,butyric and caproic acids in relation to pH[J].New Phytologist,1999,142(2):201-217.
[23]MCKEE K L,MENDELSSOHN I A,BURDICK D M.Effect of longterm flooding on root metabolic response in five freshwater marsh plant species[J].Canadian Journal of Botany,1989,67(12):3446-3452.
[24]COOPS H,VAN DER VELDE G.Seed dispersal,germination and seedling growth of six helophyte species in relation to water-level zonation[J].Freshwater Biology,1995,34(1):13-20.

备注/Memo

备注/Memo:
收稿日期:2015-12-21;修回日期:2016-01-26
作者简介:仇曙光(1977- ),男,江苏丰县人,工程师,大学本科毕业,主要从事景观规划设计与生态修复的研究。
更新日期/Last Update: 2016-04-07