[1]朱晓武,吴悦宏,纪燕玲*,等.不同树种配置模式对碳汇造林初期土壤碳变化的影响[J].江苏林业科技,2021,48(01):21-25.[doi:10.3969/j.issn.1001-7380.2021.01.005]
 Zhu Xiaowu,Wu Yuehong,Ji Yanling*,et al.Effect of different tree species allocation pattern on soil carbon change in early stage of afforestation[J].Journal of Jiangsu Forestry Science &Technology,2021,48(01):21-25.[doi:10.3969/j.issn.1001-7380.2021.01.005]
点击复制

不同树种配置模式对碳汇造林初期土壤碳变化的影响()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第48卷
期数:
2021年01期
页码:
21-25
栏目:
试验研究
出版日期:
2021-03-05

文章信息/Info

Title:
Effect of different tree species allocation pattern on soil carbon change in early stage of afforestation
文章编号:
1001-7380(2021)01-0021-05
作者:
朱晓武吴悦宏纪燕玲*肖泽鑫柳泽鑫
汕头市林业科学研究所,广东 汕头 515041
Author(s):
Zhu XiaowuWu Yuehong Ji Yanling* Xiao Zexin Liu Zexin
Shantou Forestry Science Institute,Shantou 515041, China
关键词:
树种配置模式碳汇林土壤碳积累
Keywords:
Tree species Allocation pattern Carbon sequestration forest Soil Carbon accumulation
分类号:
S153.6+1;S718.51+6
DOI:
10.3969/j.issn.1001-7380.2021.01.005
文献标志码:
A
摘要:
为研究不同树种模式模式碳汇造林对土壤碳的影响,该试验将立地条件基本一致的6个区组作为研究区,设计5个模式模式(各树种数量分数,模式1:台湾相思40%、木荷40%、马占相思10%、樟树10%;模式2:华润楠25%、红锥25%、樟树20%、米老排10%、木麻黄10%、水翁10%;模式3:马占相思30%、华润楠25%、山杜英25%、木麻黄10%、台湾相思5%、樟树5%;模式4:火力楠30%、秋枫20%、马占相思20%、台湾相思10%、米老排10%、木麻黄10%;模式5:台湾相思20%、木荷20%、樟树20%、木麻黄20%、火力楠15%、水翁5%),将12个树种随机种植在5个区组,另保留其植被原始状态的1个区组作为对照。4 a后对各指标进行测定,结果显示:在0—20 cm土壤层,5个模式与对照之间的碳含量差异显著(P<0.05);20—60 cm土壤层,模式2,3,4,5与对照之间的碳含量差异显著(P<0.05),模式1与对照碳含量之间无明显差异。土壤碳储量的大小顺序为:模式2 >模式4 >模式3 >模式5 >模式1 >对照,5个模式土壤碳储量显著高于对照,模式2,3,4,5显著高于模式1,模式2,3,4,5之间差异不明显,模式2,4的土壤碳储量分别为(106.14±22.39),(104.72±28.63) Mg C/hm2。说明这2种模式土壤碳积累表现较高,碳汇能力表现较好。
Abstract:
In order to study the effect of carbon sequestration afforestation on soil carbon under different tree species allocation patterns, 5 allocation patterns of 12 tree species (according to different number proportion) were designed. The trees were randomly arranged in 5 blocks of the same site, with another block of the same site as control(CK). The results showed that in the 0—20 cm soil layer, there were significant differences in carbon content between 5 patterns and CK (P < 0.05); in the 20—60 cm soil layer, significant difference occurred between Pattern 2, 3, 4, 5 and CK (P < 0.05), but no significant difference between Pattern 1 and CK. For the soil carbon storage, the order was presented as followed, Pattern 2 > Pattern 4 > Pattern 3 > Pattern 5 > Pattern 1 > CK. The soil carbon storage of 5 allocation patterns was significantly higher than that of CK, with the soil carbon storage of Pattern 2, 3, 4 and 5 significantly higher than that of Pattern 1 while the difference was not significant among Pattern 2, 3, 4 and 5. The soil carbon storages of Pattern 2 and 4 were (106.14±22.39) and (104.72 ± 28.63) Mg C/hm2, respectively. So we concluded that such allocation patterns as Machilus chinensis 25%+Castanopsis hystrix 25%+Cinnamomum camphora 20%+Mytilaria laosensis 10%+Casuarina equisetifolia 10%+Cleistocalyx operculatus 10% and Michelia macclurei 30%+ Bischofia javanica 20%+Acacia mangium 20%+Acacia confusa 10%+Mytilaria laosensis 10%+Casuarina equisetifolia 10% could bring higher soil carbon accumulation and better carbon sink capacity.

参考文献/References:

[1]FANF J Y, CHEN A P, PENG C H, et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292(5525):2320-2322.
[2]CALDEIRA K, DUFFY P B.The role of the southern ocean in uptake and storage of anthropogenic carbon dioxide[J].Science,2000,287(5453):620-622.
[3]NORBY R J, LUO Y Q. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world[J].New Phytologist,2004,162(2):281-293.
[4]常宗强,冯起,司建华,等.祁连山不同植被类型土壤碳贮量和碳通量[J].生态学杂志,2008, 27(5):681-688.
[5]李怒云,国家林业局,冯晓明,等.中国林业应对气候变化碳管理之路[J].世界林业研究,2013,26(2):1-7.
[6]李翀,周国模,施拥军,等.不同经营措施对毛竹林土壤有机碳的影响[J].林业科学,2015,51(4):26-35.
[7]史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005, 24(4):410-416.
[8]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报,2005,16(12):2248-2252.
[9]胡海清,罗碧珍,魏书精,等.大兴安岭5种典型林型森林生物碳储量[J].生态学报,2015,35(17): 5745-5760.
[10]梁萌杰,陈龙池,汪思龙.湖南省杉木人工林生态系统碳储量分配格局及固碳潜力[J].生态学杂志,2016,35(4):896-902.
[11]文月荣,党廷辉,唐骏,等.不同林地恢复模式下露天煤矿排土场土壤有机碳分布特征[J].应用生态学报,2016,27(1):83-90.
[12]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96-99.
[13]刘延惠,王彦辉,于澎涛,等.六盘山南部华北落叶松人工林土壤有机碳含量[J].林业科学,2012,48(12):1-9.
[14]国家林业与草原局.2018年全国林业和草原发展统计公报[R].2019.
[15]刘飞鹏,肖智慧.广东省林业碳汇计量研究与实践[M].北京:中国林业出版社,2013.
[16]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
[17]李开志.不同改造措施对马尾松低效林有机碳储量的影响[D].雅安:四川农业大学,2012.
[18]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,5(20):548-552.
[19]TIAN H Q, CHEN G S, ZHANG C, et al.Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data[J].Biogeochemistry, 2010,98(1/3):139-151.
[20]徐英明,虞依娜,李鑫,等.南亚热带不同造林模式碳汇林土壤碳积累与碳汇功能[J].生态学报,2017,39(1):359-366.
[21]黄林,王峰,周立江,等.不同森林类型根系分布与土壤性质的关系[J].生态学报,2012,32(19):610-619.
[22]MENDHAM D S, O’CONNELL A M, GROVE T S. Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of south-western Australia[J].Agriculture, Ecosystems & Environment,2003,95:143-156.
[23]ZINN Y L, DIMAS V S, RESCK J E. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil[J].Forest Ecology & Management,2002,166(1-3): 285-294.
[24]LACLAU P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia[J]. Forest Ecology and Management,2003,180(1-3):317-333.
[25]杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应[J].应用生态学报,2007,18(12):2889-2895.
[26]张梦旭,刘蔚,朱猛,等.黑河上游山地土壤容重分布特征及影响因素[J].山地学报,2019,37(2):198-205.
[27]NOVARA A, GRISTINA L, SALA G, et al. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration[J].Science of the Total Environment, 2017, 576:420-429.
[28]POST W M, KWON K C. Soil carbon sequestration and land-use change: processes and potential[J].Global Change Biology,2010,6(3):317-327.
[29]FORNARA D A, TILMAN D.Plant functional composition influences rates of soil carbon and nitrogen accumulation[J].Journal of Ecology,2008,96(2):314-322.
[30]龚志莲,李勇.川西南不同植被木本物种多样性与土壤有机碳积累[J].生态环境学报,2015, 24(9):1447-1452.
[31]BROCKERHOFF E G, JACTEL H, PARROTTA J A, et al.Plantation forests and biodiversity: oxymoron or opportunity?[J].Biodiversity and Conservation,2008,17(5):925-929.
[32]关炳昌,刘家豪,朱宇恩,等.矿区恢复植被配置模式对土壤碳库与生物多样性的影响[J].山西大学学报(自然科学版),2020,43(1):196-205.
[33]JANDL R, LINDNER M, VESTERDAL L, et al.How strongly can forest management influence soil carbon sequestration?[J].Geoderma,2007,137(3-4):253-268.
[34]ZHANG Y B, DUAN B L, XIAN J R, et al. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China[J].Forest Ecology and Management,2011,262(3):361-369.
[35]赵樟,温远光,周晓果,等.南亚热带杉木、红锥人工林碳储量及分配特征[J].广西科学,2020,27(2):120-127.
[36]唐靓茹,刘雄盛,蒋燚,等.红锥4 种林型土壤理化性质及微生物量差异分析[J].中南林业科技大学学报,2020,40(1):76-81,104.
[37]IGBP Terretrial Carbon Working Group. CLIMATE: The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol[J]. Science, 1998, 280(5368):1393-1394.

相似文献/References:

[1]施士争,路 明,王红玲,等.江苏苏北杨树农田林网更新主栽树种选择研究[J].江苏林业科技,2017,44(06):27.[doi:10.3969/j.issn.1001-7380.2017.06.008]
[2]万欣,何小洋,芮雯奕,等.榉树等11个树种根系土壤抗剪切能力的研究[J].江苏林业科技,2020,47(01):42.[doi:10.3969/j.issn.1001-7380.2020.01.008]
 Wan Xin,He Xiaoyang,Rui Wenyi,et al.Studies on rhizospheric soil′s shear resistances of Zelkova serrata and other 10 tree species[J].Journal of Jiangsu Forestry Science &Technology,2020,47(01):42.[doi:10.3969/j.issn.1001-7380.2020.01.008]
[3]练发良,余柏根,洪震,等.丽水市标志性林相天然林冠层树种组成及特征[J].江苏林业科技,2022,49(02):6.[doi:10.3969/j.issn.1001-7380.2022.02.002]

备注/Memo

备注/Memo:
收稿日期:2020-11-02;修回日期:2020-11-17
基金项目:广东省林业科技创新项目“潮汕地区碳汇造林树种选择及配置方式研究”(2014KJCX021-05)
作者简介:朱晓武(1991- ),男,湖北武穴人,硕士。主要从事森林培育、森林生态研究。E-mail:458431684@qq.com。
*通信作者:纪燕玲(1980- ),女,广东汕头人,高级工程师,大学本科毕业。主要从事森林病虫害及森林生态研究。E-mail:miccaj@163.com。
更新日期/Last Update: 2021-03-25