[1]周洁,黄婧,孙体如,等.牡丹花型基因的研究[J].江苏林业科技,2020,47(02):6-10.[doi:10.3969/j.issn.1001-7380.2020.02.002]
 Zhou Jie,Huang Jing,Sun Tiru,et al.Flowering type genes study of peonies based on transcriptome comparison[J].Journal of Jiangsu Forestry Science &Technology,2020,47(02):6-10.[doi:10.3969/j.issn.1001-7380.2020.02.002]
点击复制

牡丹花型基因的研究()
分享到:

《江苏林业科技》[ISSN:1001-7380/CN:32-1236/S]

卷:
第47卷
期数:
2020年02期
页码:
6-10
栏目:
试验研究
出版日期:
2020-04-30

文章信息/Info

Title:
Flowering type genes study of peonies based on transcriptome comparison
文章编号:
1001-7380(2020)02-0006-05
作者:
周洁1黄婧1孙体如1张忠2曹瑶2
1.江苏省林业科学研究院,江苏南京211153;
2.沭阳县生产力促进中心,江苏沭阳223600
Author(s):
Zhou Jie1 Huang Jing1 Sun Tiru1 Zhang Zhong2 Cao Yao2
1. Jiangsu Academy of Forestry, Nanjing 211135, China;
2.Productivity Center of Shuyang County, Shuyang 223600, China
关键词:
牡丹花型基因拼接转录组
Keywords:
PeonyFlower typeGeneSplicingTranscriptome
分类号:
Q786 Q943.2;Q945.45 S685.11
DOI:
10.3969/j.issn.1001-7380.2020.02.002
文献标志码:
A
摘要:
为研究牡丹花型的分子机理,挖掘调控牡丹雌蕊瓣化的候选基因,揭示牡丹不同花型的分子机理,以牡丹‘黑海撒金’(tree peony ‘HEIHAISAJIN’)和‘璎珞宝珠’(‘YINGLUOBAOZHU’)为材料,采用Illumina Hiseq测序技术进行花瓣的转录组测序,通过序列的拼接、组装和过滤,得到牡丹的转录组;比较‘黑海撒金’和‘璎珞宝珠’中转录本特定基因的表达量,获得差异表达基因;将差异表达基因进行GO功能注释和KEGG代谢通路分类,获得与花发育相关的功能基因。通过de novo的拼接和组装,获得了49 191个unigenes;差异显著性分析得到2 735个差异表达基因(DEGs),其中1 082个为上调基因,1 653个差异表达基因下调。GO功能注释发现,DEGs主要分布在25个功能区,最显著富集的为90 S preribosome。KEGG代谢通路中显著富集的通路有13条,最显著富集的通路为Ribosome。对功能基因进行挖掘和比对,发现与开花相关的ABCDEF模型基因有3个,分别为agamous-like MADS-box protein 65(AGL65), floral homeotic protein APETALA 2(AP2)和EMBRYO SAC DEVELOPMENT ARREST 3(EDA3)。认为利用转录组测序技术,可以分析雌雄蕊发育正常和雌蕊瓣化的不同花型的牡丹花瓣的功能基因。3个ABCDEF模型基因中,AGL65和EDA3为首次在牡丹中发现的花器官发育基因。说明这3个基因很可能是调控牡丹雌蕊瓣化的关键基因,参与牡丹花型的发育。该研究系统地挖掘与花型相关的基因,并发现了新的可能调控牡丹花型基因的成员,不仅为调控牡丹花器官发育挖掘了新的重要功能基因,也为揭示牡丹花型发育的分子机理奠定了重要的基础。
Abstract:
In this article, the candidate genes regulating pistilization of peony were explored to reveal the molecular mechanism of regulation of the flowering types. With tree peony ‘HEIHAISAJIN’ and ‘YINGLUOBAOZHU’ taken as materials, the petal transcriptome of peonies was sequenced by Illumina Hiseq sequencing technology by sequence splicing,assembling and filtering. The differentially expressed genes were obtained by comparing the expression of specific genes in ‘HEIHAISAJIN’ and ‘YINGLUOBAOZHU’. The functional genes were obtained from differentially expressed genes through functional annotation and BLAST. 49 191 unigenes were obtained by de novo sequencing and assembling. 2 735 differential expression genes (DEGs) were obtained by significantly analyzing, among which, 1 082 genes were up-regulated and 1 653 genes were down regulated. Gene Ontology functional annotation found that DEG mainly distributed in 25 functional groups, the most significantly enriched was 90 S preribosome. 13 pathways were significantly enriched in KEGG metabolic pathway, and the most significantly enriched pathway was Ribosome. After mining and blasting the functional genes, three genes were found to be related to flowering, which were agamous-like MADS box protein 65 (AGL65), floral homeotic protein APETALA 2 (AP2) and EMBRYO SAC DEVELOPMENT ARREST 3 (EDA3).The functional genes of petals with normal gynoecium development and pistil petalization were analyzed by using transcriptome sequencing technology in different peony flower types. In this study, three ABCDEF model genes (AGL 65, AP 2, EDA3) were found. AGL 65 and EDA3 were the first flower organ development genes found in peony. This results indicated that these three genes are most likely to regulate the petalization of peony pistil and participate in the development of peony flower development. The study deals with systematic mining of genes related to flower type and found new member genes that may regulate the flower type of peony.

参考文献/References:

[1]王莲英.中国牡丹品种图志[M].北京:中国林业出版社, 1997.
[2]苏美和,颜世宽,赵兰勇.牡丹育种研究进展[J].北方园艺, 2011(16):211-212.
[3]齐仙惠,巫东堂,李改珍,等.拟南芥成花调控途径的研究进展[J].山西农业大学学报(自然科学版), 2018, 38(9):7-13,42.
[4]姚远,王晓萍.拟南芥开花相关的分子调控机制的研究[J].安徽农业科学, 2015,43(9): 7-10.
[5]田晶,赵雪媛,谢隆聖. SPL转录因子调控植物花发育及其分子机制研究进展[J].南京林业大学学报(自然科学版), 2018,42(3):159-166.
[6]ZHAO D, JIANG Y, NING C, MENG J, et al. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall) [J]. BMC Genomics, 2014, 15(1):689.
[7]朱永平,杨德,杨晓虹,等.墨兰多舌奇花MADS特异表达基因筛选及分析[J].西北植物学报, 2011,31(11):2165-2171.
[8]SHCHENNIKOVA A V, SHULGA O A, IMMINK R, et al. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies[J]. Plant Physiology, 2004, 134(4): 1632-1641.
[9]GE J, ZHAO D, HAN C, et al. Cloning and expression of floral organ development-related genes in herbaceous peony (Paeonia lactiflora Pall.)[J].Molecular Biology Reports, 2014, 41: 6493-6503.
[10]LILJEGREN S J, DITTA G S, ESHED Y, et al. Shatter proof MADS-box genes control seed dispersal in Arabidopsis [J]. Nature, 2000, 404(6779):766-770.
[11]ZHANG L, XU Y, MA R. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica) [J]. Journal of Genetics and Genomics, 2008, 35(6): 365-372.
[12]RIPOLL J J, ROEDER A H,DITTA G S, et al. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development [J].Development,2011,138( 23): 5167-5176.
[13]KATAHATA S I,FUTAMURA N,IGASAKI T,et al. Functional analysis of SOC1-like and AGL6-like MADS-box genes of the gymnosperm Cryptomeria japonica[J]. Tree Genetics & Genomes, 2014, 10 (2):317-327.
[14]SHINO S, ITO M, UEDA K, et al. Characterization of MADS genes in gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants [J].Evolution & Development,1999,1 (3):180-190.
[15]孙崇波,向林,施季森,等.春兰AGL6基因的克隆及实时定量表达分析[J].分子植物育种,2010, 5(8):939-944.
[16]LI H F, LIANG W Q, JIA R D, et al. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice [J]. Cell Research, 2009, 20(3):299-313.
[17]敬帆,罗登攀,马婧,等.蜡梅CpAGL6基因启动子的克隆及功能初步分析[J].园艺学报,2015,42(6):1139-1149.
[18]唐文龙,赵鹏飞,李永华,等.牡丹PsAGL6基因克隆与表达分析[J].西北植物学报,2018, 38(3): 439-444.
[19]LEE H S, CHUNG Y Y, CHANDREYEE D, et al. Embryo sac development is affected in Petunia inflata plants transformed with an antisense gene encoding the extracellular domain of receptor kinase PRK1[J]. Sexual Plant Reproduction, 1997, 10(6): 341-350.

相似文献/References:

[1]祝亚云,孙海楠,蒋泽平*,等.‘凤丹’单株间生长及结实性状的变异分析[J].江苏林业科技,2017,44(06):14.[doi:10.3969/j.issn.1001-7380.2017.06.004]
 ZHU Ya-yun,SUN Hai-nan,JIANG Ze-ping*,et al.Analysis on variation of growth and reproductive traits of oil peony ‘Fengdan’[J].Journal of Jiangsu Forestry Science &Technology,2017,44(02):14.[doi:10.3969/j.issn.1001-7380.2017.06.004]

备注/Memo

备注/Memo:
收稿日期:2020-01-13;修回日期:2020-02-28
作者简介:周洁(1986- ),女,江苏宜兴人,副研究员,博士。主要从事林木花卉遗传育种工作。E-mail: zjwin718@126.com。
更新日期/Last Update: 2020-06-06